References

[1] F. Baldissera, P. Campadelli, and L. Piccinelli, “The dynamic-response of cat alpha-motoneurones investigated by intracellular injection of sinusoidal currents,” Experimental Brain Research, vol. 54, no. 2, pp. 275-282, 1984.

[2] F. Baldissera, P. Cavallari, and G. Cerri, “Motoneuronal pre-compensation for the low-pass filter characteristics of muscle. A quantitative appraisal in cat muscle units,” Journal of Physiology-London, vol. 511, no. 2, pp. 611-627, Sep 1, 1998.

[3] E. R. L. Baldwin, P. M. Klakowicz, and D. F. Collins, “Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation,” Journal of Applied Physiology, vol. 101, no. 1, pp. 228-240, Jul, 2006.

[4] E. F. Barrett, J. N. Barrett, and W. E. Crill, “Voltage-sensitive outward currents in cat moto-neurons,” Journal of Physiology-London, vol. 304, no. Jul, pp. 251-276, 1980.

[5] M. F. Bear, B. W. Connors, and M. A. Paradiso, Neurociências: desvendando o sistema nervoso, 2 ed., Porto Alegre: Artmed, 2002.

[6] D. J. Bennett, H. Hultborn, B. Fedirchuk et al., “Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats,” Journal of Neurophysiology, vol. 80, no. 4, pp. 2023-2037, Oct, 1998.

[7] B. Bigland-Ritchie, A. J. Fuglevand, and C. K. Thomas, “Contractile properties of human motor units: Is man a cat?,” Neuroscientist, vol. 4, no. 4, pp. 240-249, Jul, 1998.

[8] M. D. Binder, “Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons,” Brain Research Reviews, vol. 40, no. 1-3, pp. 1-8, Oct, 2002.

[9] M. D. Binder, and R. K. Powers, “Synaptic integration in spinal motoneurones,” Journal of Physiology-Paris, vol. 93, no. 1-2, pp. 71-79, Jan-Apr, 1999.

[10] V. Booth, and J. Rinzel, “A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns,” Journal of Computational Neuroscience, vol. 2, no. 4, pp. 299-312, Dec, 1995.

[11] V. Booth, J. Rinzel, and O. Kiehn, “Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment,” Journal of Neurophysiology, vol. 78, no. 6, pp. 3371-3385, Dec, 1997.

[12] R. M. Brownstone, “Take your PIC: Motoneuronal persistent inward currents may be somatic as well as dendritic. Focus on "facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons",” Journal of Neurophysiology, vol. 98, no. 2, pp. 579-580, Aug, 2007.

[13] T. V. Bui, S. Cushing, D. Dewey et al., “Comparison of the morphological and electrotonic properties of renshaw cells, ia inhibitory interneurons, and motoneurons in the cat,” Journal of Neurophysiology, vol. 90, no. 5, pp. 2900-2918, Nov 1, 2003.

[14] T. V. Bui, G. Grande, and P. K. Rose, “Multiple modes of amplification of synaptic inhibition to motoneurons by persistent inward currents,” Journal of Neurophysiology, vol. 99, no. 2, pp. 571-582, Feb, 2008.

[15] T. V. Bui, M. Ter-Mikaelian, D. Bedrossian et al., “Computational estimation of the distribution of L-type Ca2+ channels in motoneurons based on variable threshold of activation of persistent inward currents,” Journal of Neurophysiology, vol. 95, no. 1, pp. 225-241, Jan, 2006.

[16] R. E. Burke, “Motor unit types of cat triceps surae muscle,” Journal of Physiology-London, vol. 193, no. 1, pp. 141-&, 1967.

[17] R. E. Burke, and L. L. Glenn, “Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type-identified ankle extensor motoneurons in the cat,” Journal of Comparative Neurology, vol. 372, no. 3, pp. 465-485, Aug 26, 1996.

[18] R. E. Burke, D. N. Levine, M. Salcman et al., “Motor units in cat soleus muscle - physiological, histochemical and morphological characteristics,” Journal of Physiology-London, vol. 238, no. 3, pp. 503-&, 1974.

[19] R. E. Burke, and P. G. Nelson, “Accommodation to current ramps in motoneurons of fast and slow twitch motor units,” The International Journal of Neuroscience, vol. 1, no. 6, pp. 347-56, Jun, 1971.

[20] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input,” Biological Cybernetics, vol. 95, no. 1, pp. 1-19, Jul, 2006.

[21] W. H. Calvin, and C. F. Stevens, “Synaptic noise as a source of variability in interval between action potentials,” Science, vol. 155, no. 3764, pp. 842-844, 1967.

[22] W. H. Calvin, and C. F. Stevens, “Synaptic noise and other sources of randomness in motoneuron interspike intervals,” Journal of Neurophysiology, vol. 31, no. 4, pp. 574-587, 1968.

[23] K. P. Carlin, T. V. Bui, Y. Dai et al., “Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree,” Journal of Neuroscience, vol. 29, no. 16, pp. 5343-5353, Apr 22, 2009.

[24] R. R. L. Cisi, “Sistema de simulação de circuitos neuronais da medula espinhal desenvolvido em arquitetura WEB,” Doutorado, Escola Politécnica, Universidade de São Paulo, São Paulo, 2007.

[25] R. R. L. Cisi, and A. F. Kohn, “Simulation system of spinal cord motor nuclei and associated nerves and muscles, in a Web-based architecture,” Journal of Computational Neuroscience, vol. 25, no. 3, pp. 520-542, Dec, 2008.

[26] H. P. Clamann, “Statistical analysis of motor unit firing patterns in a human skeletal muscle,” Biophysical Journal, vol. 9, no. 10, pp. 1233-1251, 1969.

[27] D. F. Collins, D. Burke, and S. C. Gandevia, “Large involuntary forces consistent with plateau-like behavior of human motoneurons,” Journal of Neuroscience, vol. 21, no. 11, pp. 4059-4065, Jun 1, 2001.

[28] D. F. Collins, D. Burke, and S. C. Gandevia, “Sustained contractions produced by plateau-like behaviour in human motoneurones,” Journal of Physiology-London, vol. 538, no. 1, pp. 289-301, Jan 1, 2002.

[29] D. R. Cox, and V. Isham, Point processes, p.^pp. 181, London: Chapman & Hall, 1980.

[30] W. E. Crill, and P. Schwindt, “Ionic mechanisms underlying excitation-to-frequency transduction - Studies by voltage clamp methods,” Archives Italiennes de Biologie, vol. 122, no. 1, pp. 31-41, 1984.

[31] Y. Dai, K. E. Jones, B. Fedirchuk et al., “A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones,” Journal of Physiology-London, vol. 544, no. 2, pp. 521-536, Oct 15, 2002.

[32] J. C. Dean, L. M. Yates, and D. F. Collins, “Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation,” Journal of Applied Physiology, vol. 103, no. 1, pp. 170-176, Jul, 2007.

[33] J. C. Dean, L. M. Yates, and D. F. Collins, “Turning off the central contribution to contractions evoked by neuromuscular electrical stimulation,” Muscle & Nerve, vol. 38, no. 2, pp. 978-986, Aug, 2008.

[34] R. Delgado-Lezama, and J. Hounsgaard, “Adapting motoneurons for motor behavior,” Peripheral and Spinal Mechanisms in the Neural Control of Movement, vol. 123, pp. 57-63, 1999.

[35] A. Destexhe, “Conductance-based integrate-and-fire models,” Neural Computation, vol. 9, no. 3, pp. 503-514, Apr 1, 1997.

[36] A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, “An efficient method for computing synaptic conductances based on a kinetic-model of receptor-binding,” Neural Computation, vol. 6, no. 1, pp. 14-18, Jan, 1994.

[37] S. M. ElBasiouny, D. J. Bennett, and V. K. Mushahwar, “Simulation of dendritic Ca(V)1.3 channels in cat lumbar motoneurons: Spatial distribution,” Journal of Neurophysiology, vol. 94, no. 6, pp. 3961-3974, Dec, 2005.

[38] S. M. ElBasiouny, D. J. Bennett, and V. K. Mushahwar, “Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs,” Journal of Physiology-London, vol. 570, no. 2, pp. 355-374, Jan 15, 2006.

[39] L. A. Elias, “ Estudo por simulação computacional de modelos de motoneurônios com dendrito ativo em resposta a entradas sinápticas,” Dissertação, Escola Politécnica, Universidade de São Paulo, São Paulo, 2009.

[40] L. A. Elias, and A. F. Kohn, "Modelo matemático de motoneurônio do tipo S com dendrito ativo."

[41] L. A. Elias, and A. F. Kohn, "Integração sináptica em modelo de motoneurônio com dendrito ativo."

[42] A. S. Finkel, and S. J. Redman, “The synaptic current evoked in cat spinal motoneurones by impulses in single group-1a axons,” Journal of Physiology-London, vol. 342, no. Sep, pp. 615-632, 1983.

[43] J. W. Fleshman, I. Segev, and R. E. Burke, “Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal-cord,” Journal of Neurophysiology, vol. 60, no. 1, pp. 60-85, Jul, 1988.

[44] K. Frank, and M. G. F. Fuortes, “Accommodation of spinal motoneurones of cats,” Archives Italiennes de Biologie, vol. 98, pp. 165-170, 1960.

[45] A. J. Fuglevand, A. P. Dutoit, R. K. Johns et al., “Evaluation of plateau-potential-mediated 'warm up' in human motor units,” Journal of Physiology-London, vol. 571, no. Pt 3, pp. 683-93, Mar 15, 2006.

[46] A. J. Fuglevand, D. A. Winter, and A. E. Patla, “Models of recruitment and rate coding organization in motor-unit pools,” Journal of Neurophysiology, vol. 70, no. 6, pp. 2470-2488, Dec, 1993.

[47] M. A. Gorassini, D. J. Bennett, and J. F. Yang, “Self-sustained firing of human motor units,” Neuroscience Letters, vol. 247, no. 1, pp. 13-16, May 8, 1998.

[48] D. G. Goroso, R. R. L. Cisi, and A. F. Kohn, “The amplitude and phase responses of the firing rates of some motoneuron models,” Biosystems, vol. 58, no. 1-3, pp. 33-39, Oct-Dec, 2000.

[49] B. Gustafsson, and M. J. Pinter, “An investigation of threshold properties among cat spinal alpha-motoneurones,” Journal of Physiology-London, vol. 357, pp. 453-483, 1984.

[50] C. J. Heckman, and M. D. Binder, “Analysis of effective synaptic currents generated by homonymous Ia afferent-fibers in motoneurons of the cat,” Journal of Neurophysiology, vol. 60, no. 6, pp. 1946-1966, Dec, 1988.

[51] C. J. Heckman, and M. D. Binder, “Analysis of Ia-inhibitory synaptic input to cat spinal motoneurons evoked by vibration of antagonist muscles,” Journal of Neurophysiology, vol. 66, no. 6, pp. 1888-1893, Dec, 1991.

[52] C. J. Heckman, M. A. Gorassini, and D. J. Bennett, “Persistent inward currents in motoneuron dendrites: Implications for motor output,” Muscle & Nerve, vol. 31, no. 2, pp. 135-156, Feb, 2005.

[53] C. J. Heckman, M. Johnson, C. Mottram et al., “Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns,” Neuroscientist, vol. 14, no. 3, pp. 264-275, Jun, 2008.

[54] C. J. Heckman, J. J. Kuo, and M. D. Johnson, “Synaptic integration in motoneurons with hyperexcitable dendrites,” Canadian Journal of Physiology and Pharmacology, vol. 82, no. 8-9, pp. 549-555, Aug-Sep, 2004.

[55] C. J. Heckman, and R. H. Lee, “Synaptic integration in bistable motoneurons,” Peripheral and Spinal Mechanisms in the Neural Control of Movement, vol. 123, pp. 49-56, 1999.

[56] C. J. Heckman, R. H. Lee, and R. M. Brownstone, “Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior,” Trends in Neurosciences, vol. 26, no. 12, pp. 688-695, Dec, 2003.

[57] A. L. Hodgkin, and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” Journal of Physiology-London, vol. 117, no. 4, pp. 500-544, 1952.

[58] G. R. Holt, and C. Koch, “Shunting inhibition does not have a divisive effect on firing rates,” Neural Computation, vol. 9, no. 5, pp. 1001-1013, Jul 1, 1997.

[59] C. G. C. Horlings, U. M. Kung, F. Honegger et al., “Vestibular and proprioceptive influences on trunk movements during quiet standing,” Neuroscience, vol. 161, no. 3, pp. 904-914, Jul 7, 2009.

[60] J. Hounsgaard, H. Hultborn, B. Jespersen et al., “Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan,” Journal of Physiology-London, vol. 405, pp. 345-367, Nov, 1988.

[61] J. Hounsgaard, and I. Mintz, “Calcium conductance and firing properties of spinal motoneurones in the turtle,” Journal of Physiology-London, vol. 398, pp. 591-603, Apr, 1988.

[62] H. Hultborn, “Plateau potentials and their role in regulating motoneuronal firing,” Peripheral and Spinal Mechanisms in the Neural Control of Movement, vol. 123, pp. 39-48, 1999.

[63] A. S. Hyngstrom, M. D. Johnson, and C. J. Heckman, “Summation of excitatory and inhibitory synaptic inputs by motoneurons with highly active dendrites,” Journal of Neurophysiology, vol. 99, no. 4, pp. 1643-1652, Apr, 2008.

[64] E. Jankowska, and I. Hammar, “Spinal interneurones; how can studies in animals contribute to the understanding of spinal interneuronal systems in man?,” Brain Research Reviews, vol. 40, no. 1-3, pp. 19-28, Oct, 2002.

[65] K. V. B. Johnson, S. C. Edwards, C. Van Tongeren et al., “Properties of human motor units after prolonged activity at a constant firing rate,” Experimental Brain Research, vol. 154, no. 4, pp. 479-487, Feb, 2004.

[66] K. E. Jones, and P. Bawa, “Computer simulation of the responses of human motoneurons to composite 1A EPSPS: Effects of background firing rate,” Journal of Neurophysiology, vol. 77, no. 1, pp. 405-420, Jan, 1997.

[67] G. Kamen, R. Sullivan, S. Rubinstein et al., “Evidence of self-sustained motoneuron firing in young and older adults,” Journal of Electromyography and Kinesiology, vol. 16, no. 1, pp. 25-31, Feb, 2006.

[68] S. M. Kay, Intuitive probability and random processes using MATLAB, New York: Springer, 2006.

[69] D. Kernell, “Repetitive impulse firing in motoneurons: facts and perspectives,” Peripheral and Spinal Mechanisms in the Neural Control of Movement, vol. 123, pp. 31-37, 1999.

[70] D. Kernell, The motoneuron and its muscle fibres, 1 ed., New York: Oxford University Press, 2006.

[71] O. Kiehn, and T. Eken, “Prolonged firing in motor units: Evidence of plateau potentials in human motoneurons?,” Journal of Neurophysiology, vol. 78, no. 6, pp. 3061-3068, Dec, 1997.

[72] O. Kiehn, and T. Eken, “Functional role of plateau potentials in vertebrate motor neurons,” Current Opinion in Neurobiology, vol. 8, no. 6, pp. 746-752, Dec, 1998.

[73] P. M. Klakowicz, E. R. L. Baldwin, and D. F. Collins, “Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans,” Journal of Neurophysiology, vol. 96, no. 3, pp. 1293-1302, Sep, 2006.

[74] C. Koch, Biophysics of computation: information processing in single neurons, p.^pp. 562, New York: Oxford University Press, 2004.

[75] J. J. Kuo, R. H. Lee, M. D. Johnson et al., “Active dendritic integration of inhibitory synaptic inputs in vivo,” Journal of Neurophysiology, vol. 90, no. 6, pp. 3617-3624, Dec 1, 2003.

[76] R. H. Lee, and C. J. Heckman, “Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo,” Journal of Neurophysiology, vol. 76, no. 3, pp. 2107-2110, Sep, 1996.

[77] R. H. Lee, and C. J. Heckman, “Bistability in spinal motoneurons in vivo: Systematic variations in rhythmic firing patterns,” Journal of Neurophysiology, vol. 80, no. 2, pp. 572-582, Aug, 1998.

[78] R. H. Lee, and C. J. Heckman, “Bistability in spinal motoneurons in vivo: Systematic variations in persistent inward currents,” Journal of Neurophysiology, vol. 80, no. 2, pp. 583-593, Aug, 1998.

[79] R. H. Lee, and C. J. Heckman, “Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo,” Journal of Neurophysiology, vol. 82, no. 5, pp. 2518-2527, Nov, 1999.

[80] R. H. Lee, and C. J. Heckman, “Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha(1) agonist methoxamine,” Journal of Neurophysiology, vol. 81, no. 5, pp. 2164-2174, May, 1999.

[81] R. H. Lee, and C. J. Heckman, “Adjustable amplification of synaptic input in the dendrites of spinal motoneurons in vivo,” Journal of Neuroscience, vol. 20, no. 17, pp. 6734-6740, Sep 1, 2000.

[82] R. H. Lee, J. J. Kuo, M. C. Jiang et al., “Influence of active dendritic currents on input-output processing in spinal motoneurons in vivo,” Journal of Neurophysiology, vol. 89, no. 1, pp. 27-39, Jan, 2003.

[83] Y. R. Li, M. A. Gorassini, and D. J. Bennett, “Role of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats,” Journal of Neurophysiology, vol. 91, no. 2, pp. 767-783, Feb 1, 2004.

[84] C. W. MacDonell, T. D. Ivanova, and S. J. Garland, “Afterhyperpolarization time-course and minimal discharge rate in low threshold motor units in humans,” Experimental Brain Research, vol. 189, no. 1, pp. 23-33, Jul, 2008.

[85] L. S. Mahl, “Modelagem matemática de dendritos ativos em motoneurônios,” Dissertação, Escola Politécnica, Universidade de São Paulo, São Paulo, 2005.

[86] M. Manuel, C. Meunier, M. Donnet et al., “How much afterhyperpolarization conductance is recruited by an action potential? A dynamic-clamp study in cat lumbar motoneurons,” Journal of Neuroscience, vol. 25, no. 39, pp. 8917-8923, Sep 28, 2005.

[87] M. Manuel, C. Meunier, M. Donnet et al., “The afterhyperpolarization conductance exerts the same control over the gain and variability of motoneurone firing in anaesthetized cats,” Journal of Physiology-London, vol. 576, no. 3, pp. 873-886, Nov 1, 2006.

[88] M. Manuel, C. Meunier, M. Donnet et al., “Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons,” Journal of Neuroscience, vol. 27, no. 47, pp. 12977-12988, Nov 21, 2007.

[89] P. B. C. Matthews, “The simple frequency-response of human stretch reflexes in which either short-latency or long-latency components predominate,” Journal of Physiology-London, vol. 481, no. 3, pp. 777-798, Dec 15, 1994.

[90] P. B. C. Matthews, “Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise,” Journal of Physiology-London, vol. 492, no. 2, pp. 597-628, Apr 15, 1996.

[91] C. C. McIntyre, and W. M. Grill, “Extracellular stimulation of central neurons: Influence of stimulus waveform and frequency on neuronal output,” Journal of Neurophysiology, vol. 88, no. 4, pp. 1592-1604, Oct, 2002.

[92] C. Meunier, and K. Borejsza, “How membrane properties shape the discharge of motoneurons: A detailed analytical study,” Neural Computation, vol. 17, no. 11, pp. 2383-2420, Nov, 2005.

[93] J. B. Munson, "Synaptic input to type-identified motor units," The segmental motor system, M. D. Binder and L. M. Mendell, eds., New York: Oxford Univeristy Press, 1990.

[94] P. Nickolls, D. F. Collins, R. B. Gorman et al., “Forces consistent with plateau-like behaviour of spinal neurons evoked in patients with spinal cord injuries,” Brain, vol. 127, pp. 660-670, Mar, 2004.

[95] D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neuronal spike trains and stochastic point processes .I. Single spike train,” Biophysical Journal, vol. 7, no. 4, pp. 391-418, 1967.

[96] R. S. Person, and L. P. Kudina, “Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle,” Electroencephalography and Clinical Neurophysiology, vol. 32, no. 5, pp. 471-483, 1972.

[97] M. Piotrkiewicz, “An influence of afterhyperpolarization on the pattern of motoneuronal rhythmic activity,” Journal of Physiology-Paris, vol. 93, no. 1-2, pp. 125-133, Jan-Apr, 1999.

[98] A. V. Poliakov, R. K. Powers, and M. D. Binder, “Functional identification of the input-output transforms of motoneurones in the rat and cat,” Journal of Physiology-London, vol. 504, no. 2, pp. 401-424, Oct 15, 1997.

[99] R. K. Powers, “A variable-threshold motoneuron model that incorporates time-dependent and voltage-dependent potassium and calcium conductances,” Journal of Neurophysiology, vol. 70, no. 1, pp. 246-262, Jul, 1993.

[100] R. K. Powers, and M. D. Binder, “Persistent sodium and calcium currents in rat hypoglossal motoneurons,” Journal of Neurophysiology, vol. 89, no. 1, pp. 615-624, Jan, 2003.

[101] Author ed.^eds., “Neuroscience,” 3 ed., Sunderland: Sinauer, 2004, p.^pp. Pages.

[102] M. M. Rank, X. Li, D. J. Bennett et al., “Role of endogenous release of norepinephrine in muscle spasms after chronic spinal cord injury,” Journal of Neurophysiology, vol. 97, no. 5, pp. 3166-3180, May, 2007.

[103] J. C. Rekling, G. D. Funk, D. A. Bayliss et al., “Synaptic control of motoneuronal excitability,” Physiological Reviews, vol. 80, no. 2, pp. 767-852, Apr, 2000.

[104] M. Rudolph, and A. Destexhe, “Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies,” Neural Computation, vol. 18, no. 9, pp. 2146-2210, Sep, 2006.

[105] M. A. G. Ruggiero, and V. L. R. Lopes, Cálculo numérico: aspectos teóricos e computacionais, 2 ed., São Paulo: Makron Books, 1997.

[106] F. Sala, and A. Hernandezcruz, “Calcium diffusion modeling in a spherical neuron - relevance of buffering properties,” Biophysical Journal, vol. 57, no. 2, pp. 313-324, Feb, 1990.

[107] W. R. Schlue, D. W. Richter, K. H. Mauritz et al., “Accommodation of cat spinal motoneurons to linearly rising currents before and during long-term changes of membrane-potential,” Brain Research, vol. 76, no. 2, pp. 213-221, 1974.

[108] W. R. Schlue, D. W. Richter, K. H. Mauritz et al., “Responses of cat spinal motoneuron somata and axons to linearly rising currents,” Journal of Neurophysiology, vol. 37, no. 2, pp. 303-309, 1974.

[109] W. R. Schlue, D. W. Richter, K. H. Mauritz et al., “Mechanisms of accommodation to linearly rising currents in cat spinal motoneurons,” Journal of Neurophysiology, vol. 37, no. 2, pp. 310-315, 1974.

[110] P. C. Schwindt, and W. E. Crill, “Properties of a persistent inward current in normal and TEA-injected moto-neurons,” Journal of Neurophysiology, vol. 43, no. 6, pp. 1700-1724, 1980.

[111] P. C. Schwindt, and W. E. Crill, “Role of a persistent inward current in moto-neuron bursting during spinal seizures,” Journal of Neurophysiology, vol. 43, no. 5, pp. 1296-1318, 1980.

[112] P. C. Schwindt, and W. E. Crill, “Factors influencing moto-neuron rhythmic firing - results from a voltage-clamp study,” Journal of Neurophysiology, vol. 48, no. 4, pp. 875-890, 1982.

[113] P. C. Schwindt, and W. E. Crill, "Membrane properties of cat spinal motoneurons," Handbook of the spinal cord, R. A. Davidoff, ed., pp. 199-242, New York: Marcel Dekker, 1984.

[114] I. Segev, J. W. Fleshman, and R. E. Burke, “Computer-simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons,” Journal of Neurophysiology, vol. 64, no. 2, pp. 648-660, Aug, 1990.

[115] N. P. Shapiro, and R. H. Lee, “Synaptic amplification versus bistability in motoneuron dendritic processing: A top-down modeling approach,” Journal of Neurophysiology, vol. 97, no. 6, pp. 3948-3960, Jun, 2007.

[116] R. Shiavi, and M. Negin, “Stochastic properties of motoneuron activity and effect of muscular length,” Biological Cybernetics, vol. 19, no. 4, pp. 231-237, 1975.

[117] P. J. Sparto, J. G. Jasko, and P. J. Loughlin, “Detecting postural responses to sinusoidal sensory inputs: A statistical approach,” Ieee Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 3, pp. 360-366, Sep, 2004.

[118] G. J. Stuart, and S. J. Redman, “Voltage dependence of Ia reciprocal inhibitory currents in cat spinal motoneurons,” Journal of Physiology-London, vol. 420, pp. 111-125, Jan, 1990.

[119] H. Sturm, A. Schmied, J. P. Vedel et al., “Firing pattern of type-identified wrist extensor motor units during wrist extension and hand clenching in humans,” Journal of Physiology-London, vol. 504, no. 3, pp. 735-745, Nov 1, 1997.

[120] C. Sutherland, B. Doiron, and A. Longtin, “Feedback-induced gain control in stochastic spiking networks,” Biological Cybernetics, vol. 100, no. 6, pp. 475-489, Jun, 2009.

[121] K. E. Tansey, and B. R. Botterman, “Activation of type-identified motor units during centrally evoked contractions in the cat medial gastrocnemius muscle .2. Motoneuron firing-rate modulation,” Journal of Neurophysiology, vol. 75, no. 1, pp. 38-50, Jan, 1996.

[122] A. M. Taylor, and R. M. Enoka, “Quantification of the factors that influence discharge correlation in model motor neurons,” Journal of Neurophysiology, vol. 91, no. 2, pp. 796-814, Feb 1, 2004.

[123] R. D. Traub, “Motorneurons of different geometry and size principle,” Biological Cybernetics, vol. 25, no. 3, pp. 163-176, 1977.

[124] T. Uchiyama, H. Johansson, and U. Windhorst, “A model of the feline medial gastrocnemius motoneuron-muscle system subjected to recurrent inhibition,” Biological Cybernetics, vol. 89, no. 2, pp. 139-151, Aug, 2003.

[125] M. F. Vieira, “Novos modelos de motoneurônios de vertebrados,” Tese, Escola Politécnica, Universidade de São Paulo, São Paulo, 2002.

[126] M. F. Vieira, and L. A. Elias, “Accommodation in motoneuron models with passive dendrite: Response to linearly rising currents,” Neurocomputing, vol. 72, no. 13-15, pp. 3396-3398, Aug, 2009.

[127] M. F. Vieira, and A. F. Kohn, “Compartmental models of mammalian motoneurons of types S, FR and FF and their computer simulation,” Computers in Biology and Medicine, vol. 37, no. 6, pp. 842-860, Jun, 2007.

[128] E. R. Williams, and S. N. Baker, “Circuits generating corticomuscular coherence investigated using a biophysically based computational model. I. Descending systems,” Journal of Neurophysiology, vol. 101, no. 1, pp. 31-41, Jan, 2009.

[129] J. E. Zengel, S. A. Reid, G. W. Sypert et al., “Membrane electrical-properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat,” Journal of Neurophysiology, vol. 53, no. 5, pp. 1323-1344, 1985.

[130] M. L. Zhang, N. Sukiasyan, M. Moller et al., “Localization of L-type calcium channel Ca-v 1.3 in cat lumbar spinal cord - with emphasis on motoneurons,” Neuroscience Letters, vol. 407, no. 1, pp. 42-47, Oct 16, 2006.

This reference list was created from EndNote® (Thomson Reuters) using a template from IEEE Transactions on Biomedical Engineering.