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Abstract—Neuronal behavior is dependent on random inputs from a multitude of synaptic
contacts on the soma and dendritic tree. Therefore, simulations of different types of noise are often
required in the experimental and theoretical investigation of the properties of neurons and neuronal
assemblies. The direct simulation of these noise sources by simple difference equations may
therefore be quite useful and a general approach is presented in this paper. Initially, a first order
model and its time-discretization are analyzed in detail, followed by a generalization to more
complex models.

The firing patterns of neurons are dependent on the random behaviors of their membrane
potentials at the trigger zone. These depend on the propagation of the randomly occurring
postsynaptic potentials from specific places on the dendritic tree or soma to the trigger zone.
Different models may represent a variety of circumstances in which random membrane potentials
arise at the trigger zone. Simulations of different types of noise are often required in the
experimental and theoretical investigation of the properties of neurons and neuronal assemblies.
The direct simulation of these noise sources by simple difference equations may therefore be quite
useful and a general approach is presented in this paper. This paper presents a detailed analysis of
the very useful first order model and its time discretization. The criterion used is that the
autocovariance sequence of the discrete time model be a sample of the original autocovariance
function. Several cases are presented which are of practical interest, including the case of constant
output variance independent of the model’s time constant. General models are time-discretized by
the impulse response invariance method. Two applications are presented, one is related to the
modeling of the synaptic currents by the alpha function instead of the delta function and the second
deals with analog synaptic noise generation by D/A conversion of computer generated noise
sequences. © 1997 Elsevier Science Ltd.

Computer simulation of neuronal noise Computer simulation of synaptic noise
Algorithms for the simulation of synaptic noise Simulation of neuronal noise
Simulation of synaptic noise

1. INTRODUCTION

In most neurons in vertebrate central nervous systems (CNS) the random fluctuations in the
membrane voltage at the trigger zone are mainly due to the multitude of randomly occurring
propagated postsynaptic potentials arising from the dendritic tree and the soma. Some refer
to this randomness in somatic membrane potential as synaptic noise [1,2] and usually a
white noise model will be inadequate to represent all the dynamics involved from the
postsynaptic patches to the trigger zone. The existence of random behaviors in neurons has
been acknowledged for a long time and much research, experimental and theoretical, has
been done trying to answer questions related to the effects of different noise sources on
neuronal dynamics [3]. More recently, there has been a great effort in the study of the
dynamics of neuronal networks both deterministic and random. Unfortunately, their
analytical study is usually forbidding, except under very unrealistic assumptions from a
biological viewpoint, and hence much work has to rely on large scale neuronal network
simulators [4,5]. When the elements of the network are noisy, the simulation has to generate
a much larger number of action potentials from each neuron so that statistics such as cross-
correlations can be estimated with adequate statistical significance. This requires an
extremely large number of simulated membrane potential samples. The computer overhead
will be extremely large if for each neuron a model for dendritic propagation of synaptic
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potentials (e.g. based on partial differential equations) has to be integrated numerically with
noise inputs. The more efficient approach generates the noises at the trigger zone by simple
difference equations and without numerical integration of very complicated differential
equations. Sometimes a given model neuron is to be studied with different noise
characteristics at the trigger zone and it usually is an advantage to have the noise and the
trigger zone models simulated independently [6]. Another quite interesting use of noise
sequences is to apply them as input currents into real neurons [2] to mimic the effects of
dendritic or somatic propagation dynamics on synaptic activities. A microelectrode inside
the cell soma injects the D/A-converted random waveforms generated by a computer and
the resulting trains of action potentials are analyzed.

In many parts of the CNS, specific inputs to neurons are usually segregated to specific
regions of the dendritic tree when they are not on the soma [7]. Hence, the synaptic
influences from each type of input (e.g. la synaptic inputs on motoneurons) can be
approximated by a lumped parameter model instead of a stochastic partial differential
equation model. This representation of activities at the neuron trigger zone due to one or
more populations of synaptic sources at specific regions of the dendritic tree or soma gives
a tremendous simplification to the computer simulation of the problem and is one of the
guiding lines of the present work.

This paper presents a careful analysis of algorithms for the computer generation of noise
sequences originating from a first order neuronal or dendritic model with noise input. This
is followed by the presentation of a general approach to the computer simulation of higher
order models with noise input.

2. CONTINUOUS TIME MODEL
2.1. White noise approximation of the equivalent input synaptic current

Most central nervous system neurons are continually being bombarded by a large number
of rather weak synaptic inputs which cause a noisy looking membrane potential when
recorded at the soma. The random process at the trigger zone may be viewed as the result
of a filtering process by the dendrites and soma of all the random synaptic activations. Let
us fix our attention on a population of synapses occurring at a certain region of the soma-
dendritic tree complex. Very brief excitatory and inhibitory postsynaptic currents p,(t) and
p(1), respectively, are generated at that region and their equivalent model can be
approximated by a white noise process. One justification for this is by assuming linearity
and invoking the result that the superposition of a large number of point processes (each
associated with a different synapse) is approximated by a Poisson process [8]. This means
that, in approximation, the synaptic currents will be described by

=2 p(t—1)+ 2 plt—1,), (1

where the f, and 7, are time instants in two independent Poisson processes with mean rates
A, and A, respectively. Each term in expression (1) is basically a shot noise and the power
spectral density (the Fourier transform of the autocovariance function) is:

S W)= AV () + AV (), (2)

where V,(w) and V{w) are the Fourier transforms of p,(f) and p(?), respectively.

As the pulses p,(7) and p,(¢) are much briefer than the time constants of interest in somatic
and dendritic propagations, the terms IV (w)I> and IV(w)!* in equation (2) may be
approximated by a flat spectrum in the relevant range of w.

Another approach to justify the white noise approximation may be found in the
derivation of the diffusion approximation of a neuron model receiving a large number of
excitatory and inhibitory synapses exerting very small influences at the trigger zone [9].

2.2. First order linear model for the current-to-voltage transformation from the region of
synaptic bombardment to the trigger zone

In some cases, such as when the dendritic tree is electronically compact and behaves
linearly, a simple first order linear model can describe approximately the membrane
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potential v(r) at the trigger zone when the synapses occur at the soma or dendrites [10]. The
model is a parallel association of a resistance R with a capacitance C, the input i(f) being
the equivalent current source corresponding to all the synaptic actions and the output v(z)
being the membrane potential measured across the resistance—capacitance association.
Sometimes such a model is called the RC or “leaky integrator” model [10] and has been
widely used in the neural modeling literature. The resulting differential equation is

dav(t) 1

— =—wv(H+ = i(t 3

i (1) o (0] (3)
with @,21/R=1/7, where 7=RC is the time constant measured at the soma.
The differential equation in (3) has the general solution

1
v(t)=vy exp( — twy)+ C ,[[’) expl — (t — A aypli(A)dA 4)

where v, is the membrane potential at time zero: v(0)=v,.

If vy=0 and i(¢) is a very brief pulse applied at time zero, approximated by &(¢), the
solution to (3) is

h(t)=y exp(— t/7)="y exp( — tay), 5)
where y=1/C and h(¢) is the impulse response of the system described by equation (3).
When i(7) is a random process so is v(f) and from our previous considerations i(t) will be

a white noise. If its mean E[i(#)]=ip then the mean of the output random process can be
obtained from (4):

ipc(1 — exp(— wy)
Cap

which is time-varying even if the initial state v, is zero, the transient decaying with a time

constant equal to 7= 1/w, towards the steady state value i,/Cwy=R-i,. No transient occurs

if both v, and i, are equal to zero.

The analysis that follows assumes zero mean white noise in the computation of the auto-
covariance ACV of the random process v(¢): ACV, (1.5)2E[(v(1) — #)(s) — u(s)]. By
defining y(t)év(t)— m(H) we have that E[y(1)]=0, V1, y(0)=0 and ACV, (1,5)=ACV,,(1.5).
From this:

(D) =E[v(B)] =v, exp( — tawp) + (6)

1 1
Elyoys)= s s ¢ SXPL= (= Nlwy] & expl— (s — Nl E[(A)i(n)]dAdT.

As Y(2) is generated using an input current process i(f) which is a zero mean white noise
we have that E[i(2)i(s)]=B°&t— s), where B? is the finite value of the constant power
spectral density of the input white noise, i.e. §,(w)=? (notice that B is not the variance
of the input noise because the variance or power of continuous time white noise is infinite
since variance= |, B%df=. For s>1 the result above becomes

i
Ely(y(s)]= = expl — (t+5)y] [§ exp(wph)exp(wo)BPdA

which results in
B’ 1
E[y(0)y(s)]= c exp[ — (1+s)wy) o [exp(2ewyt) — 1]

and making s=t+ 7 (7=0)
2 2

20)0C2 exp( - Tw()) - zclwo

which gives the autocovariance function of the nonstationary process v(f):
2 2

B
0 exp( — Tawy) m exp( — wy(2t+1); 7>0. @)

Ely@)y(t+1]= expl — wy(2t+7)]

ACV (tt+ 1=
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As a test of expression (7) we have that for 7=0 and 7=0 the autocovariance is zero,
which is correct because the system always starts from the same initial state. According to
equation (7), the autocovariance depends on the ongoing time ¢ but it decays with a time
constant equal to 7/2 to the first expression on the right side of the equation for increasing
values of 7. In practical terms, this means that if we want to obtain an approximately
stationary (wide-sense) random process, then we have to start measuring v(f) only after an
adequate interval of time from the initial time (a few time constants will do). In this case,
when the nonstationarities (the transients) will have died out, the autocovariance will be

2

V ()= - :
ACV (1) Y0nC? exp(— w,y7); >0
or
ﬁ2
ACV (D= S exp( — aylf); TeR. (8)

An exponential autocovariance function of the membrane potential has been found, for
example, in cat motoneurons [1] and in invertebrate sensory receptors [11,12].
The variance or power is obtained from (7) by making r=0:

2 B’ B
o= nC? - Ea—)o-c—i exp(— wy2t); ™>0
and if we wait long enough the variance tends to the steady state value
2 2
2= _'B_ = E_‘f
T 2aC 20 ©)

Here one should notice that altering the time constant 7 while keeping C fixed will alter
the output noise variance.
The power spectral density S, (w) is the Fourier transform of (8):
ﬁZ

e (0’ +wd)

S, (w) ;welR. 10)

This power spectrum is sometimes called Lorentzian and is typical of the output of a first
order lowpass system that has white noise at its input. It can also be derived from the
relation

Sw(@)=H(jw)*S (), an

where S,(w)=8? and H(jw) is the frequency response of the system and can be found from
the transfer function H(s) by substituting s=jw. In the case of the system described by (3)
the transfer function is

V) _ R _ Ray _ 1

I(s)  1+s57 wy+s Cls+awp)

H(s)= (12)

2.3. Models with impulse responses composed of a sum of a finite number of exponentials

For a general dendritic tree and with the linearity property satisfied, the impulse response
for synaptic input at the soma and the output at the soma or trigger zone is an infinite sum
of exponentials [13]:

h()= El v, exp(— t/1)= é‘] ¥, exp( — twy) (13)

where w,=1/7,.

In practice, a finite number of terms in the sum will usually yield an acceptable
approximation. Recently, a new method was proposed for fitting neuronal or other
experimental data to such sums of exponentials [14]. Assuming a sum of K exponentials in
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(13), the resulting transfer function is:

K
Hig= 3 L
k=t §—s,

(14)

where 5;,= —w,= — l/7,.

When input synaptic currents occur at a certain region of a dendritic tree, the impulse
response at the soma or trigger zone will depend on characteristics such as the geometries
involved, membrane resistivities and capacitances, intracellular specific resistance and the
types of boundaries [10,15]. Analytic expressions from cable theory may vary in difficulty,
many times an infinite series will have to be truncated so that a sum of a finite number of
functions results. Other times the impulse response will be an expression that is not a
function of pure exponentials [10,15].

Finally, an approach which has been used in neuronal computer simulations is the
compartmental modeling of the dendritic tree. If the structures are passive (dynamically

K
linear) then the impulse response is of the form h(f)= kgl ¥, €xp( — /1) [16] and hence the

transfer function is given by (14). As a generalization of all we have seen, if the synaptic
bombardment comes from more than one source acting on more than one region of the
neuron, and if linearity in the propagation dynamics may be assumed for all the different
paths, then the contributions from each source may be summed at the trigger zone.
Therefore, the overall impulse response or transfer function will be a sum of different
impulse responses or partial transfer functions, each given by equation (14) with a specific
K value. Difference equations simulating this overall transfer function (by simulating the
partial equations) will permit the generation of the desired synaptic noise at the trigger
zone.

3. TIME-DISCRETIZATION OF CONTINUOUS TIME MODELS

One fundamental issue in the discretization of the continuous time models presented in
the previous section is what criterion should be used to obtain the corresponding difference
equations. In digital filter theory there are a few methods to obtain discrete-time versions
of continuous time systems. These include: impulse response invariance, bilinear
transformation, numerical solution of a differential equation, minimization of a frequency
domain approximation criterion [17}. Those based on the frequency domain are usually
inappropriate for the simulation of synaptic noise. This stems from the fact that the most
usual applications of digital filters are related to spectral shaping while in neuronal
dynamics the time domain characteristics are the relevant ones [18,19]. In other words, a
reproduction of the autocovariance is much more important in synaptic noise generation
than that of the power spectral density and any discrete time simulation should have an
output autocovariance sequence which is a good approximation to the sampled version of
the original continuous time system autocovariance function.

In what follows, some issues will be presented in more detail for the simple model of
equation (3). The objective will be to discretize the time, so that we only generate noise
samples at every T units of time. The difference equations will be a function of the counting
variable n (n=0, 1, 2,...) which actually means that input and output variables are obtained
at multiples nT of the sampling period 7. The sampling rate in samples/s or Hz is the inverse
of T.

3.1. Time-discretization of equation (3)

From the general solution (4) to the system (3) we have for a time step T between two
consecutive sampling times:

v(t+D=exp( — Tawy) v(t)+ % I,’*’ expl — ¢+ T — D) wyl-i(A)dA

with v(0)=v,.
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Different approaches to approximate the expression above (e.g. for small 7 the
exponential term under the integral can be assumed constant in the interval and taken out
of the integral) give the general result:

w(it+T=aw(t)+b-i(),

where w(7) is the approximation to v(r) and a and b are constants that depend on T, wy (or
7) and C. For convenience, the input white noise mean i, will be represented separately in
the equation above, resulting

w(t+D=a-w(®)+b-i(t)+cipc

where i(¢) is a zero mean white noise.
As the time axis is being sampled so that only values such as t=nT are relevant, we can
leave out the factor 7 in denoting w((n+1)T) and w(nT) by w(n+1) and w(n), respectively:

wn+1)=a-w(n)+b-i(n)+c-ipc (15)
with w(0)=v,.
The general solution of (15) is:

C'iDc‘(l - a")

w(my=a"vy+ 3 a"Ibi(i— 1)+ L n=12,.... (16)
J=1 l-a
By applying expected values to both sides of (16) we have:
Efw(n)]=a"v,+ C—-——'IDC'(I —a)
l—a
which when compared with (6) sampled at r=nT gives:
a=exp(— ayT) (17)
1 —_ —
c= _M . (18)
Cawy

The values of a and ¢ given by (17) and (18), respectively, assure that the difference
equation will have steady state and transients due to the initial state and to the nonzero mean
ipc of the input noise which are exact sampled versions of the continuous time result given
in (6). After the transients die away the mean of w(n) is i,/Cwy=R-ipc. Only in the case
vo=0 and i,=0 there will be no transient in the output mean value.

The resulting difference equation (15) will convert a white noise sequence i(n) into a
colored noise sequence w(n). A white noise sequence has a constant power spectral density
S(f)= B2 for fe[ ~ 1/2T,1/2T] and a finite variance (power) equal to [ 27, B*dr=BYT, where
1/T is the sampling frequency. From a different perspective, it is important to note that if
a white noise sequence is generated with a pre-established variance o then the power
spectral density will be 8=0*T. In this situation, when the sampling frequency increases
the power spectral density decreases so that the area remains constant. Sometimes
confusions arise in the literature when these issues of constant power spectral density versus
constant variance are not clearly established.

It is important to check if the second order time statistics of the discrete-time version of
(3) can be made compatible with the original continuous time statistics. For this we shall
find the autocovariance sequence of the output sequence w(n) of equation (15), assuming
a zero mean white noise input. The autocovariance should ideally be a perfect reproduction
of that for the original continuous time model, or at least it should tend to the continuous
time autocovariance when the step size tends to zero.

To find ACV, (n) one should take i(n) with zero mean and v,=0 and then compute
E[w(k)w(k+n)]. The input power spectral density is assumed to be B2 and therefore the
corresponding autocovariance is E[i(k)i(j)] =(B*T)8(k — j). Therefore:

Elwiow()= 3, & a*r~ bBliG— i€ - D)
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where p=k+n (p>k or in other words n>0). The equation results

k+pp 2

~2Q2_ k+pp2@2 kel
T—Ela B:=a"""b’pB

(a
T(1—ad

E{w(K)w(p)]=

or with p=k+n:
(a -k __ ak) b2ﬁ2 -
E k - pb2 2 = el . 2k .
(Pl =a’b*B* s = s a1 =a™)
Using the expressions for a given in (17) we have:

b 2[32
ACV,, (kk+n)=
T(1 —exp(— 2T wy))

exp( — nTwy)-(1 — exp( — 2kTwy)), (19)
or still

202 _ 252 _
ACV.(kk+n)= b’B*  exp(—nTwy)  b*B* exp( @ T(2k+n))
T (I-exp(=2Twy) T (1-exp(—2Tw))

Remembering that nT= 7 and that kT=¢, the comparison of equations (7) and (20) gives
VTV —exp(— 2T wy)
Vi€ '
The resulting difference equation is then obtained by substituting (17) and (21) in (15):
VTVI—exp(—2Tw) |
mc -i(n). (22)
For completeness we give the corresponding discrete time transfer function:
Wiy  z7 VTV ~exp(—2Tw,)
1)~ V2a,Cll -z "exp(~ Tay)]
If the input noise has i,50 then (22) will be
VIV~ exp(—2Ten) i+ LRl g
V2w,C Cuwy

The result we have just derived shows that for the simple first order system given in (3)
it is feasible to obtain a difference equation whose output has an autocovariance sequence
(transient and stationary parts) that is a perfect sampled version of the continuous time
autocovariance function. For more complicated systems the above derivations may be
unwieldy and approximate methods have to be used. In these cases it could be desirable to
check if the discrete time autocovariance tends to the continuous time when the step size
tends to zero.

Note that the discrete time autocovariance of the output noise from (22) is

2 BZ
exp(—nTwy) — —— exp(— Twy(2k+n 25
and that for 7—0 k and n will have to tend to © to make ¥7=¢ and nT= 7 both finite.

From this last expression we obtain the evolution of the variance of w(n)

2 2
2 B B
ok)= - exp( — Twy2k
(9] 3l 2wl P(— Twy2k)
which shows that after a transient the variance tends to

._ B _Bt_PBR

T 2t T 2C7 T 2C

(20)

b= 21

w(n+1)= exp( — Twy)-w(n)+

(23)

w(n+1)= exp(— Tawy) win)+

ACV, (kk+n)=
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for any finite fixed step size 7. As in the continuous time case, we point out that changing
7 while keeping C constant will also change the output noise power. If different time
constants 7=RC are desired but without changing the output noise variance then one should
change the RC product but keep the R/C ratio constant. For example, if R=C=Vr then
o?=B%2 for any time constant 7.

In the derivations above a discrete time white noise input was used with a power spectral
density equal to B° (i.e. autocovariance =(8%T)8(k — j)). The discrete approximation (15) to
equation (3) will give results that converge to the correct solution (of the continuous time
system) when the step size T tends to 0, but with no error in terms of the autocovariance
sequence. It is important to emphasize that while 8%T is the variance of the discrete time
white noise at the input of (15) the white noise at the input of the continuous time system
(3) has infinite variance (or power) but has a constant power spectral density equal to 82
In this way when 7—0 the discrete time system tends to the continuous time system and the
discrete time white noise variance tends to %, which agrees with the variance of the
continuous time white noise.

Finally, a simpler difference equation can be obtained from (24) using an approximation
for small T (say T=7/10):

w(n+1)=(1 — T/7)w(n) +(TIC)-i(n) +(T/C)-ip, (26)

where i(n) is zero mean white noise with variance 8%T.

3.2. Time-discretization of the first order model of equation (3) by the method of impulse
response invariance

The method of time-discretization by impulse response invariance [17] consists in
imposing
h n)=T-h(nT) 27

where h(nT) is the continuous time impulse response and A (n) is the discrete time version.
This is equivalent to a mapping of the following transfer function in the complex variable
s (associated with the continuous time system)

K
His)= = _ Y
k=1 (s —s)
on the transfer function in the complex variable z (associated with discrete time system)
given below

X Ty,
BlO= & = T expTol”
where z ' corresponds to a unit delay in time.

We shall apply this method to the case of the system described by equation (3). The
impulse response and the transfer function give the same information, having one you can
get the other by Laplace transformations. As model (3) has the transfer function given in
(12), it is straightforward to obtain H(z) from (28), with y,=Rw, and s,= — &y

TRw, _ W@
1—z 'exp(=Tay) Iz)°

(28)

H(z)=

(29)

where W(z) and /(z) are the z-transforms of the output and input sequences, respectively.
From this transfer function the corresponding difference equation is obtained by cross-
multiplying and anti-transforming:

w(n)=exp( — Tayp)-w(n — 1)+ TRwyi(n)
but since wy21/RC=1/7
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T
w(n)=exp( — Twy) win— 1)+ C i(n) (30)

for n=1, 2,... and w(0)=x,.

The difference equation (30) should now be compared with the one obtained before in
(22). Besides a delay of one sample in the input, which is innocuous for the purpose of
generating noise samples w(n), the other difference is in the constant that multiplies i(n). In
(30) it is T/C, while in (22) itis VTV — exp( — 2Twy)/V 2w, - C, which, nevertheless, can
be approximated by 7/C if we take a small enough T. Therefore, the two approaches yield
similar results if 7 is made small enough (e.g. 7<0.17), although (22) is more precise.

3.3. Special cases of practical interest

3.3.1. If the input has a constant power spectral density 8 i.e. a variance that increases
linearly with the inverse of the time step 7, equation (22) should be used, or its approximate
expression (30). The theoretical steady state variance is 2= 8%2w,C>.

3.3.2. If the input white sequence i(n) is to have a fixed variance o independent of the step
size 7, then (22) should have the input coefficient divided by V'T:

V1 —exp(—2Tw,)

w(n+1)=exp(— Tay)-wn)+ \/2_(4—)0C i(n) 31
and similarly for (30):
w(n)=exp( — Twe)wn— 1)+ g i(n). (32)

The theoretical steady state output variance is 02 =0*/2w,C>.

To have a feeling of how the two approaches behave, we made simulations of the two
difference equations (given by (31) and (32)) with different values of the step size T. Each
equation, with ;=5 and C=1, always received as input the same 30,000 Gaussian samples
from a unit variance white noise sequence and, therefore, the theoretical output noise
variance o~ is 0.1. The first 1000 samples of the output noise were not used to compute the
variance estimate. In Table 1 it can be seen that the estimated variances &2, and &2, of the
output noises generated by the two systems (equations (31) and (32), respectively) are
roughly similar even though the variance of the noise generated by (31) is closer to the
theoretical value. Had we used the original equations (22) and (30) the variances would
have depended very strongly on the step size 7.

3.3.3. If the available input white sequence &(n) always has unit variance, which may be
convenient in terms of computer routines or if the same input sequence (meaning wave-
shape) is to be used but with different “amplitudes”, i.e. different standard deviations, then
equations (31) and (32) become respectively:

oV'1—exp(— 2Tay)

w(n+1)=exp( — Twy)-w(n)+ \/2—w0C

“&n) (33)

Table 1. Variances of the output noises
for two difference equations as a function

of T

7=0.02 T7=0.01 T7=0.002
&2, 0.1001 0.0983 0.0991
o,  0.1104  0.1034 0.1001
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and

oVT
C

where &(n) is a zero mean white noise with unit variance and ¢? is the actual desired
variance for the input. The theoretical steady state output variance is o2 =02 w,C>.

w(n)=exp(— Twy)-wn— 1)+ &(n), (34)

3.3.4. If in the previous case we impose in addition that the steady state output noise
variance be independent of 7 (or of w,) we can make R=C=V 7 to obtain ol=0c%/2. The
equations become:

oV 1—exp(—2T/7)

w(n+1)=exp(— T/7)-w(n)+ NG

-&n) (35)

and
win)y=exp(—T/7n)-w(n— 1)+ oV T/T&n). (36)

This case is relevant, for example, in the study of the effects of different colored noises
on neuronal behavior. If we use any of the previous algorithms, a decrease in the frequency
cutoff, i.e. an increase in the time constant, will decrease the variance or power of the
resulting output noise with the probable consequence that less neuronal discharges will
occur, independently of the differences in frequency content in the noise. The use of any of
the equations (35) or (36) avoids this pitfall and the difference in neuronal behavior will
only reflect the differences in the time structure of the noise signals.

3.3.5. If the output noise is desired with a fixed plateau value in the power spectral density
(at small w) which does not depend on the system time constant 7 then, from (10) we must
have R=constant. If, for example, R=1, then 7=C and the equations (33) and (34)
become:

oV 1 —exp(—2T/7)

w(n+ =exp(— T/7)-w(n)+ V2

&(n)

and

oVT

T
(n)

w(n)=exp(—T/n)wn— )+ .

3.3.6. In any of the cases above, if the input noise is to have a non zero mean i, then a term
ipc-(1 —exp(— 7))/ Cw, should be added to the respective difference equation, as done,
for example, in equation (24). If the step size is small enough the term would simplify to
incT/C.

3.3.7. Any of the difference equations presented in this paper may be used for the
generation of analog noise signals from computer-generated noise sequences. In this
setting, let T, be the interval between the samples or the inverse of the sampling frequency
f_ of the D/A converter. If a noise sequence with an autocovariance having a time constant
7 is D/A converted with T;=aT (a being a positive constant), then the resulting analog
noise will have an autocovariance function with time constant a7. An illustration of this
result will be given later in Application Example II.

3.4. Time-discretization of an impulse response that is a sum of a finite number of
exponentials

X
When the impulse response is a sum of exponentials El v exp( — tw,) the suggested

method of discretization will be based on the impulse response invariance and the main
result to be taken from the previous derivations is that for an input white noise sequence
with a fixed unit variance the calculated coefficient multiplying the input sequence should
be multiplied by o/V'T. This will be done below to find equation (38) from (37). Each
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K
exponential in the sum El Y exp( — twy) will result in a first order transfer function and the

total transfer function will be given by (14). The method of impulse response invariance
generates the transfer function in the z domain given by (28), from which we obtain:

_ o Ty () -
W(@)=H(2)1()= X 1=z 'exp(Ts)] 2, 92,
where s,= — @, and each g,(n) is given by
gi(n)=exp( — Tw)-q(n— 1)+ Tyi(n) 37

for n=1, 2, 3,...; k=1, 2, 3,..., K and g(0)=0. However, as mentioned above, the use of a
standard input white sequence &(n) with variance equal to 1 requires a correction to (37):

adn)=exp(— Tw)-qn— 1)+ ¥V To &n). (38)

The overall output is w(n) given by

w(n)=q,(n)+q,(n)+... +qx(n). (39

Therefore, K simultaneous difference equations like (38) are used with the same white
noise input sequence &n), and at each time step the values of all the g,(n) are summed to
yield the value of the output w(n) at the same time step. Some of the observations given in
the previous item for the first order system also apply here.

4. FINAL REMARKS

To generate the input white sequence, either a uniform (0,1) generator or a N(0,1)
Gaussian sample generator is used. In the uniform (0,1) case, each sample should have 0.5
subtracted and the result multiplied by V12 (to get a zero mean unit variance white noise).
It should be noted that, due to the central limit theorem, the output (after a short transient)
of the difference equations given in this paper will be Gaussian even when the input is non-
Gaussian.

In case a desired dendritic equivalent impulse response is not expressed as a combination
of exponentials [15], an optimization method may be employed to obtain a difference
equation approximation, as described in section 5.3.3 of [17].

The step size should be chosen smaller than the smallest time constant involved in the
impulse response (e.g. between T=7.,/5 and 7,,;,/10).

If steady state statistics are desired, the output noise sequences must be taken after the
transients have decreased enough, e.g. after five or ten times the largest time constant
involved in the impulse response. The starting sample number to be used in the output noise
sequence n,,;,, will depend on the step size T, e.g. ny,;,=107,,,/T. For example, if 7,;,=1 ms,
=15 ms and 7=0.1 ms, then n,,;,=1500.

Tmnx

5. APPLICATION EXAMPLES

(I) In some applications a more refined model for the postsynaptic currents, such as the
popular alpha function [10}, may be desired. The objective here will be to simulate synaptic
noise using the alpha function impulse response for the postsynaptic currents and the simple
first order model of equation (3) for the generation of the postsynaptic potentials as
propagated to the trigger zone. For the latter we can use (22) or (30) except that instead of
having a white noise input i(n), it will have the colored noise x(n) as its input. For the
former we shall derive in what follows the corresponding difference equation relating the
output x(n) to the input white noise sequence &(n) with zero mean and unit variance.

The alpha function is a’ exp( — ar) and hence an impulse response of the postsynaptic
current is
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h (f)=a’t exp(— at)

the input impulse being associated with a presynaptic action potential (ignoring the synaptic
delay) and « setting the postsynaptic current rise time. In this example we shall use alpha
values 20, 40 and 100.

As the time will be discretized with step size 7, from (27) the discrete time impulse
response will be

h.(n)=Ta*nT exp( — anT).

This expression is valid when the input power spectral density is a constant 8% The
corresponding transfer function may be found from a table of z transforms [17] as:

T’a’exp(—aDz™'  X(@2)

ch(Z)z (1 — exp( - aT)Z - 1)2 - ;(_Zj- .

(40)

As an analogy to what was done when we wanted a white noise input &n) with unit
variance the final transfer function has to have an additional factor o/\/T multiplying the
numerator. From this modified transfer function we obtain the corresponding difference
equation:

x(n)=2exp(— al)x(n — 1) —exp(— 2aD)x(n — 2)+ oT**a’ exp(— aDn—1) (41)

with x(0)=0, x(1)=0 and n=2, 3, 4,.... This difference equation should be used together
with either equation (22) or (30), e.g.

Alpha = 20
0.2 r - — —
0 WW
_02 L 1 L i
20 22 24 26 28 30
Alpha = 40
0.2 T T L] R
o MWW
_O 2 e 1 - . L
20 22 24 26 28 30
Alpha = 100
0.2 T T T T
0 WMW
’0'2 . 1 - 1
20 22 24 26 28 30

Fig. 1. Time course of noise signals generated by simulations of alpha impulse response for
synaptic currents followed by a first order system. Larger alpha values yield waveforms with
sharper peaks and faster transitions.
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Fig. 2. Inter-spike interval histogram for leaky integrator with threshold model with noise input
corresponding to a=40.

w(n)=exp(— Tay)wn— 1)+ %‘ -x(n) 42)

with w(0)=w(1)=0 and n=2, 3, 4..... As explained before, the initial zero samples should
be discarded from the output noise sequence w(n) before using it in a simulation. An
alternative approach would be to obtain the overall transfer function by multiplying the two
transfer functions given by (40) and either (23) or (29). The result would have to be
corrected (as seen before) by multiplying the numerator by o/V'T so that the overall input
is white noise with unit variance. From this overall transfer function the corresponding
difference equation may be derived. This alternative approach, besides giving a single
difference equation algorithm, also justifies why in (42) we used (30) and not (32). Figure
1 shows noise signals generated by (41) and (42) for alpha values of 20, 40 and 100, from
which we can see that the high frequency content for a=100 is more pronounced than for
a=20. This difference in the time structure may or may not cause statistical differences in
the neuronal spike trains. For the sake of illustration, a simple leaky-integrator-with-
threshold neuronal model was simulated having as input the noise signals we have just
described. To generate 21 action potentials 10,000 input noise samples had to be generated.
It should be emphasized that in order to get stable and significant spike train statistics a
much larger number of action potentials is needed (say, at least 1000). Figure 2 shows the
inter-spike interval histogram for the simulation with a=40, the histograms for the other
alpha values being very similar to this one (using a visual comparison). Indeed, the
histogram from a simulation without using the alpha system, i.e. assuming the synaptic
currents to be modeled by impulses, was also similar to Fig. 2. It may be that other statistics
would show a dependence on alpha values and, also, it may be that a different trigger zone
model would be more dependent on the different alpha values used. As a final illustration
in this example, the neuronal membrane potentials are shown in Fig. 3 for a=40 and the
same input current noise sequence, one with standard deviation 0.1131 and the other
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0.2262. The noisier membrane potential results in more variability in the interspike
intervals.

(II) In this application the objective is to generate analog colored noise signals by D/A
conversion of computer generated noise sequences. One use would be to inject as current
in a neuron’s soma. In this example, the D/A converter is used with two different rates
yielding two noise signals, the autocovariance function of one being a time-scaled version
of the other. The simple first order model (35), with 7=1 ms and T=0.1 ms, is used to filter
a Gaussian white noise sequence (zero mean and unit variance) with 10,000 samples
generated by Matlab. When the D/A converter outputs samples at every T,=100 us (=7),
the autocovariance function of the analog noise at the output of the D/A should have a time
constant of 1 ms, but when the noise samples are sent by the D/A at every T,=20 us (i.e.
5 times faster) then the analog noise will have a 5 times (100 us/20 us) shorter
autocovariance time constant, i.e. equal to 0.2 ms. An alternative view is in the frequency
domain: when we pass from 7,=100 us to 7,=20 us the analog noise bandwidth will
increase 5 times.

A program in C implements the algorithm given by (35) and sends the resulting sequence
to a D/A converter at a rate equal to f,=1/T.. Figure 4 shows the resulting analog noise
autocovariances when the D/A clock is 10 kHz and 50 kHz, i.e. 7,=100 us and 7,=20 us,
respectively. The slower curve corresponds to 7,=100 us. The time constants for the two
autocovariances were estimated graphically to be equal to 1.03 ms and 0.18 ms, which are
close to the theoretical values 1.0 ms and 0.2 ms. Note that the variance in both cases is
approximately 0.42, which is somewhat lower than the theoretical value 0.5, probably due
to sampling variations. It should be emphasized that in these procedures the value of 7 in
the difference equations should stay constant, only the D/A output rate 1/7; is changed.

Alpha = 40, std(i) = 0.1131
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Fig. 3. Membrane potential time courses for two simulations with the same alpha value but with
different variance of the synaptic input noise. The lower figure is for higher input variance and
shows larger inter-spike interval variability.
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ACV of D/A output with 100 ps and 20 ps output interval

100 150 200
n (sample interval is 1/60000 s)

Fig. 4. Autocovariances for two analog noise signals generated from the same sequence stored in
a computer but with different D/A sampling intervals. The abscissa is the sample number, where
the interval between two adjacent samples corresponds to 16.67 us. The ordinate is in V2, the peak
of the autocovariances indicating the respective noise variances. These autocovariances were
computed with Matlab after A/D conversion of the analog noise signals at a rate of 60,000/s.

From this example we can see that a noise sequence may be used repeatedly to generate
different analog noises if a D/A converter is used at different rates. The resulting analog
noise autocorrelation function will change in time scale according to the D/A sampling
interval but its form will stay the same.
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