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Abstract

An electronic neuromime and simple computer programs simulated
synaptic effects on pacemaker neurons corroborating and extending earlier
work. Previous experiments showed that with regular IPSP trains within certain
rate ranges referred to as “paradoxical” (PS), faster arrivals lead to faster post-
synaptic discharges and there is discharge locking in the input-to-output rate
relations of 1:2, 1:1 and 2:1. The present simulations showed additional
positively sloped segments with locking at ratios such as 2:3, 3:2, 5:3, 7.4
between 1:2, 1:1 and 2:1 PS’s, There was, in fact, an enormous, perhaps infinite,
number of PS’s, and conceivably there are no non-PS’s at all.

Using irregular pre- and postsynaptic spontaneous discharges, the main PS’s
(1:2, 1:1, 2:1) were reduced in width and the additional segments disappeared.
For presynaptic interval coefficients of variation (CV) up to 0.20, a small PS
persisted in the 1:1 region even with postsynaptic CV’s up to 0.10. Simulations
of high inhibitory rates showed that while jittery IPSP trains with CV up t00.20
practically silenced the postsynaptic cells, extremely jittery (quasi-Poisson)
ones did not.

Discrepancies between the predictions of a mathematical model (Segundo,
1979) for the presynaptic bounds for PS’s and experimental data from crayfish
SRO had been attributed tentatively to post-tetanic hyperpolarization (PTH).
Neuromime simulations with PTH confirmed this, and showed that a better
formulation was to use, instead of the natural pacemaker interval, the shorter
one during rebound caused by PTH. )

Simulations of the postsynaptic pacemaker with recurrent inhibition (RI) in
addition to the usual inhibitory input also showed PS’s. If a recurrent IPSP
occurred on the average every k spikes, if it was elicited ina “pseudo-random”
way, i.e., with a probability I’k after each spike, the PS’s were narrower than
when they were elicited “deterministically”, i.e., one every k't pacemaker
impulse.

Simulations with regular trains of EPSP’s also suggested an enormous
number of “acceleratory” segments with phase-locking, and minute interposed
regions of “paradoxical” deceleration, i.., where the increase in presynaptic
rate caused postsynaptic slowing.
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The “delay function” plots the arrival time of a PSP relative to the last
postsynaptic spike, i.e. the “phase” (9), against the interval lengthening, i.c., the
delay (3). For IPSP's this function is approximated well by a straight line
A¢+ B; according to a mathematical model (Segundo, 1979), the slope A must
be between 0 and 2 for a PS to exist. An analytical-graphical approach showed
that for 1<A<2, there is hysteresis when passing between adjacent PS’s by
changing the presynaptic mean rate: this has been reported in nature. Under
these conditions on A, some PS bounds depend on the initial phase while others
do not.

1. Introduction

The present communication reports electronic and computer simulations of
regular and irregular, inhibitory and excitatory influences on a pacemaker cell. These
cells are common in invertebrate and vertebrate nervous systems and their response
to synaptic influences has been studied extensively for IPSP’s (Kohn et al., 1981;
Perkel et al., 1964; Schulman, 1969; Segundo et al., 1976; Vibert et al., 1979),
including computer simulations (Moore et al., 1963; Perkel et al., 1964), and briefly
for EPSP’s (Segundo and Perkel, 1969).

The present simulations probed further into the following points: (?) The existence
of positively sloped and locked segments besides the 1:1, 2:1, 1:2; these segments,
where greater steady-state presynaptic rates are associated with greater postsynaptic
rates are called “paradoxical” when the synapse is inhibitory. (i7) The details of the
portions between paradoxical segments, i.e., of the “interposed” segments. (iif) The
influence of postsynaptic post-tetanic hyperpolarization and of recurrent inhibition
on the existence and location of paradoxical segments. (iv) The development of
hysteresis in going from one to another of adjacent paradoxical segments. (v) The
dependence of locking patterns on the initial “phase”, i.e., on the position of the first
IPSP arrival relative to the pacemaker spike train. (vi) The effects of pre- and/or post-
synaptic interval variability on the positively sloped segments. (vii) The delay
functions for two IPSP’s and its relation to the 2:1 locking,

2. Materials and Methods

The neuromime used is an electronic analog designed to represent a “leaky
integrator” model of a pacemaker neuron whose mathematical aspects are discussed
by Holden (1976) for example, and that has been used profitably. The circuit is
detailed in Appendix 1 and consists essentially of a current source feeding a capacitor
Cin parallel with a resistor R. The capacitor voltage increases exponentially as charge .
accumulates and when it reaches a certain threshold value, an output pulse (“action
potential™) is elicited that resets the capacitor to its initial zero voltage.

The neuromime’s time scale was 30 to 50 times faster than that of the neuron in the
crayfish stretch receptor organ (SRO) (Kohn et al., 1981), thus allowing comparable
observations in shorter times. For example, the spontaneous rate of the postsynaptic
pacemaker was around 300/s and the typical rates of the SRO were 4/s to 11/s. The
neuromime’s pacemaker inherent interpulse interval coefficient of variation (CV)
was around 1.77X 1073, and therefore negligible. When a less regular output

-
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discharge was desired, a 0 to 50 Hz bandwidth Gaussian “white” noise was added to
the integrator capacitor, the power of the noise determining the level of
irregularity.

This pacemaker could be affected by inhibitory or excitatory synaptic input (IPSP’s
or EPSP’s) that mimicked natural ones. The effect of a single IPSP or EPSP (or of
bursts) on the pacemaker interval was characterized by the “delay function”. The
time or “phase” ¢ of PSP arrival after a postsynaptic pulse is plotted on the abscissa
against the corresponding lengthening 8(¢) of the interspike interval on the ordinate
(Perkel et al., 1964; Segundo, 1979). Different delay functions were obtained by
varying the values of the components in the circuit and/or the duration of the input
pulses to the “synapse”. With the components mentioned in Appendix 1 and 40 ps
input pulses, the delay functions were close to those in the living preparation (Kohn
etal., 1981).

Adaptation to sensory stimuli in crayfish SRO is attributed mainly to post-tetanic
hyperpolarization (PTH) produced by a sodium electrogenic pump (Nakajima and
Takahashi, 1966; Sokolove and Cooke, 1971). Because of the latter, every action
potential is followed by a small hyperpolarization which depolarizes back
exponentially to the resting voltage. The higher the firing rate, the less time for
individual hyperpolarizations to decay and hence the more hyperpolarized the
membrane becomes, thus tending to decrease the firing rate. The negative feedback
character of the effect on the discharge is clear from this description. PTH in these
cells is also a main cause for postinhibitory rebound — the lower firing rate during an
inhibitory presynaptic train causes little PTH, and the average postsynaptic potential
is less negative than during a spontaneous condition; hence, when the inhibitory train
is removed the postsynaptic cell transiently discharges at a rate compatible with the
more depolarized membrane potential and therefore higher. It was hypothesized that
PTH would cause significant deviations in the paradoxical phase-locked segments
from the no-rebound case analyzed theoretically (Segundo, 1979). Indeed, rebound
implies a different “latent™ postsynaptic spontaneous rate from that without it, and
thus would cause different locking ranges. The rebound is not included in the model,
where the postsynaptic cell is assumed to return immediately to its spontaneous
period after PSP’s are interrupted. To test the hypothesis of such a difference, a circuit
to mimic the effect of the electrogenic pump was implemented and introduced in the
neuromime (see Appendix 1).

Recurrent inhibition (RI) is not uncommon in nervous systems (e.g., Eccles, 1957;
Eckert, 1961; Shepherd, 1979). Two types, referred to as “deterministic” and
“pseudo-random”, were included in some simulations. In the deterministic type,
every kth output pulse (i.e., the kth, 2kth, etc.) generated one recurrent inhibitory
pulse. In the pseudo-random type, every pulse generated one RI pulse with a
probability of 1/k, i.e., on the average there was an RI pulse every k pulses. The
pseudo-random RI simulates the case of some uncertainty in the firing of the
inhibitory cell in response to EPSP’s (e.g., because of membrane noise, Stevens,
1972). Jansen et al. (1970) pointed out that sometimes the recurrent inhibition in the
crayfish SRO is one-to-one (i.e., k=1), at other times there is one IPSP every kth
impulse, and finally, at other times there is an irregularly patterned RIL. These facts
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motivated our use of deterministic and pseudo-random RI with different “gains”.
Appendix 2 explains the device that carried out this function.

Regular input trains were obtained from conventional pulse generators. Irregular
trains were obtained from an electronic device that generated a Poisson-like process
with nearly exponentially distributed intervals. Lower degrees of irregularity were
obtained feeding the Poisson into a digital frequency divider whose outputs were
nearly gamma-distributed intervals, as in the crayfish experiments (Kohn ez al,
1981).

The input and output mean rates were measured with electronic counters by taking
average counts over 10s and 50s, depending on the degrees of irregularity. The values
were displayed as mean rate transformation (MRT) graphs with presynaptic (input)
rates on the abscissa and postsynaptic (output) rates on the ordinate. For the recurrent
inhibition simulations, the MRT displayed on the ordinate the postsynaptic rate with
recurrent and external input inhibition simultaneously applied and on the abscissa,
the external input inhibition rate.

Simple computer programs were written in Basic for the purpose of studying the
effect of initial phase on locking and the existence of other positively sloped locked
segments. Phase-locking between input and output in the computer programs or the
neuromime were detected by visual inspection.

3. Results

IPSP’s — Inhibitory Inputs

The mean rate transformation (MRT) for the neuromime subjected to periodic
IPSP’s (Fig. 1a) showed a zigzag curve with sharp corners between positively sloped
or “paradoxical” segments (PS) with 1:2, 1:1, 2:1 (input:output) rate relations, and
negatively sloped “interposed” segments (IS) found previously (Kohn et al., 1981;
Perkel et al., 1964; Schulman, 1969; Segundo et al., 1976). The widest PS was the 1:1

Table 1
Experimental and theoretical bounds (in s~ 1y of paradoxical segments.

Experimental Theoretical Corrected theoretical -
no PTH w/PTH* no PTH w/PTH
11 182-284  250-305  180-284 191297 238-310
1:2 113-145 138-153 112-146 118-151 132-158

2:1 321-395 470-525 - - -
Spontaneous rate (s~ )
298.5 313.0
Natural period (ms)
3.35 3.20

Delay function
8=0.61¢+0.05 56=0.576¢+0.04

*PTH: post-tetanic hyperpolarization.
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Fig. 1. Mean rate transformation (MRT) for inhibitory synapse. On the abscissa and the ordinate, the
corresponding pre- and postsynaptic rates over a stationary period. The paradoxical segments are
determined with regular trains in each case and their slopes and bounds are indicated by broken
lines. The spontaneous postsynaptic rate without IPSP’s is indicated by a dotted horizontal line.
Different graphs correspond to different pre- or postsynaptic discharge irregularities measured by
the interval coefficient of variation (CV). a. Regular pre- and postsynaptic trains. Several
paradoxical segments are visible. A presynaptic rate above 470/s silenced the postsynaptic firing.
b. Presynaptic interval CV 0.10; Postsynaptic CV 0.03 (circles), 0.10 (asterisks for 1:1 in inset) or 0.35
(triangles). c. Presynaptic CV 0.20; Postsynaptic CV 0.00 (circles) or 0.10 (inset for 1:1 PS).
d. Presynaptic CV 0.30. e. High presynaptic rates: Presynaptic train regular or irregular with CV 0.20

or 1.00 (Poisson); Postsynaptic CV 0.00 (circles) and 0.10 (triangles).
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which went, say, from 182 to 284/s occupying a domain of 102/s, followed in order by
the 2:1, the 1:2 and the 3:1 (see Table 1). The IS’s were very narrow, occupying at most
about 20/s in the abscissa scale.

The neuromime showed, in addition, clearcut 2:3, 4:3 and 3:2 PS’s: these, though
suspected in crayfish, had not been demonstrated (Kohn et al., 1981). Phase-locking
between the input and output trains was observed within all PS’s.

In different parts of the domain, the postsynaptic mean rate (ordinate in Fig. 1a)
showed different sensitivities to presynaptic variations, i.e., the ratios between
corresponding changes or the slopes of the graph varied. (/) At extreme presynaptic
rates, i.e., very low or very high (under 100/s or over 470/s), the postsynaptic rate
changed little or not at all in a behaviour that can be referred to as “limiting” or
“saturation”. (i) Just below the lowest presynaptic rate that stopped the postsynaptic
discharge (i.e., 470/s) small presynaptic accelerations produced a precipitous
postsynaptic slowing. (iii) Within each PS, the postsynaptic rate increased linearly
with that of the inhibitory influence and discharges were locked. (7v) Within each IS,
an overall marked decreasing trend was superimposed upon narrow and alternatively
increasing and decreasing portions where locking either occurred only with several
pre- and postsynaptic events or was not apparent, respectively. (v) Around the
Jjunction ofa PS with an IS, even small presynaptic changes had marked consequences
involving a proportionate slowing and persistent locking on the one side and a greater
slowing and complex correlations to the other.

When the input or presynaptic train was irregularized, i.e., when its interval CV
increased, while the postsynaptic spontaneous (non-inhibited) discharge remained
regular, certain PS’s decreased in width and others disappeared. (/) When the input
CV was 0.10 (Fig. 1b, filled circles), there were PS’s only at the 1:2, 1:1 and 2:1 ratios,
narrower and with rounded corners at their extremes. (i) When the CV was 0.20
(Fig. 1c, filled circles), only a 1:1 PS interrupted the decreasing trend. (ii)) When the
CV was 0.30 or higher, the mean rate transformation MRT was monotonic decreasing
(Fig. 1d). These characteristics agree with those in the crayfish SRO (Kohn et al.,
1981).

When the spontaneous postsynaptic train was irregular, PS’s also narrowed or
disappeared. When, as in the SRO, the spontaneous postsynaptic interval CV was
0.03, a regular presynaptic train caused an MRT with somewhat narrower
paradoxical segments, particularly the 3:1 segment that shrunk by a factor of 3 and the
4:3 and 3:2, that disappeared entirely.

When both the pre- and postsynaptic spontaneous discharges were irregularized
(an observation not yet performed in living synapses), the PS’s were reduced even
further (Fig. 1b, inset and triangles; Fig. ¢, inset). For input and spontaneous output
CV’sequal t0 0.10, the 1:2 and 2:1 PS’s became almost horizontal and shorter. If then
the input CV was increased to 0.20, only a short, almost horizontal PS remained in the
1:1 region,; if, finally, the postsynaptic CV became 0.35, no PS’s remained (Fig. 1b,
open triangles).

Other simulations concentrated on behaviour at high presynaptic rates around
where the postsynaptic discharge is suppressed. In the living preparation, it is difficult
to obtain sufficient stationary data for the statistical analyses because the post-
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synaptic neuron tends to escape and start firing (Kohn e al., 1981). When the post-
synaptic CV. was 0.0, a regular input train that went from 458/s to 466/s (Fig. le)
caused a very abrupt fall in the postsynaptic rate from 75/s to 0/s, i.e., an average drop
of 9.4 postsynaptic impulses/s per each presynaptic increase of 1 impulse per second.
For a less regular input (CV = 0.20), the fall in postsynaptic rate was less abrupt: for an
input variation of from 470/s to 590/s, it went from about 63/s to 0/s, i.e., an average
drop of 2.0/s per presynaptic increase of 1/s. Finally, for a Poisson input, the fall was
very slow, resembling an exponential curve, and never reaching zero. If the post-
synaptic pacemaker was spontaneously jittery (e.g., with interval CV=0.10 in
Fig. le), the fall of the MRT was practically unaltered if the input had a CV=0.0 or
0.20 or some value in between; the fall was considerably less steep when the input was
Poisson.

When post-tetanic hyperpolarization (PTH) was added to the basic neuromime
circuit, the MRT for periodic inputs was similar to that in Fig. la, except for
considerably narrower PS’s: the experimental bounds for the 1:1 and 1:2 PS’s in Table
1 for a natural postsynaptic interval N = 3.2ms illustrate this, the width of the 1:1 PS,
for instance, being 55/s instead of 102/s. The maximum input CV compatible with a
PS still was 0.20. A rebound acceleration followed the end of the inhibitory train and
was more pronounced the greater the difference between the output inhibited rate and
the natural rate. When the input rate was at the lower or upper ends of the 1:1 PS, i.e.,
at 250/s or 303/s, the first rebound output interval N’ was 2.6ms or 3.1ms,
respectively, or when near the ends of the 1:2 PS, at 140/s or 150/s, N” was 2.9ms or
3.1ms, respectively. Essentially the same results occurred with simulations of
inhibitory “synapses” with higher (e.g., 0.83) or lower (e.g., 0.28) slopes in the delay
functions.

The postsynaptic pacemaker, when subjected to recurrent inhibition RI of the
deterministic type, i.e., with a fed-back IPSP every kth postsynaptic impulse, fired
with a consistent pattern with a repeating sequence of “long-short interval” ifk =2, or
“long-short-short-short” if k = 4. The output pattern was regular if k = 1: in this case,
when the phase 1 of the RI pulse increased, the pacemaker rate decreased almost
linearly (as reported by Vibert ez al., 1979) with the equation —21n+ 277, where nis
measured in ms. The spontaneous rate without RI was 297 impulses/s. The relation
between the rates of the independent inhibitory terminal and the inhibited cell, i.e.,
the usual MRT, for pacemakers inhibited recurrently showed the usual PS (e.g., 1:1,
2:1, 1:2, etc.). For easier viewing, Figure 2a does not show the ordinate axes of the
MRT’s but only the presynaptic rate ranges where a PS occurred for the RI 1/k ratios
0, 1/1, 1/2 and 1/4. The spontaneous rates (dotted lines in the figure), as well as the PS
widths, decreased when RI was present. PS’s were observed also with the pseudo-
random RI, i.e., when the probability of a recurrent IPSP was 1/k per pacemaker
impulse. Here also the widths decreased when compared to the non-RI situation
(Fig. 2b). The deterministic and the pseudo-random RI differed in that for the latter
the lower bounds of the PS’s were never smaller than those without RI (Fig. 2b). The
general behaviour of the MRT curves for the non-recurrently inhibited pacemaker
subjected to jittery inhibitory inputs was reproduced when RI was present.
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Delay functions for a single IPSP were practically linear (correlation coefficients
over 0.9). All results presented refer to the delay functiond = 0.61 ¢ + 0.049 (§and ¢
normalized with respect to the spontaneous period N) unless otherwise indicated.
The delay function derived analytically for the leaky integrator with IPSP sizes equal
to a times the capacitor voltage at the time of its arrival (as approximately
implemented in the neuromime) is:

A=®+ In [(exp(— D/O))(1 —a)+a]
where A and @ are the non-normalized delay and phase, respectively and { is the
model’s time constant RC. It was found experimentally that plots of this function for
each of several values of a (e.g., 0.4, 0.6) are good approximations to straight
lines.

The normalized delay function for 4 IPSP’s at 1000/s was §=0.98¢ +0.737, when
the natural period of the pacemaker was 3.50ms. When the input consisted of short
high-rate and regular bursts rather than individual pulses, the MRT also showed
paradoxical segments and phase-locking. The corresponding 1:1 paradoxical segment
(where there was one burst of 4 IPSP’s for each postsynaptic AP) was between the
input rates of 106/s and 162/s; the 1:2 PS was from 78/s to 101/s.

An experimental-theoretical study was performed to clarify certain aspects of the
2:1 locking, a situation difficult to model, as Segundo (1979) and Kohn (1980) pointed
out, because of the dependence of the delay function on the interval between the input
IPSP’s. Three delay functions were obtained for pairs of IPSP’s. Each corresponded to
a pair with a different interval I (2.7, 2.8 or 3.0 ms), chosen so that their 1/I rates (i.e.,
370.4, 357.1 or 333.3/s, respectively) were within the experimentally determined 2:1
PS (313/s to 389/s). With a postsynaptic spontaneous or natural period of 3.45ms, the
results were the delay functions of Table 2. The phase ¢ is measured from the last
postsynaptic pulse to the first pulse of the input pair, and the delay is, as usual, the
lengthening of the postsynaptic interval. The maximum phase ¢y, is that which still
allows 2 IPSP’s to fall within a single postsynaptic interval (and is derived in the
section on mathematical considerations): hence, the delay functions of Table 2 are
defined in the domain (0, ¢y,)-

Table 2
Delay functions for two IPSP’s separated by interval L.

Experimental delay Maximum
functions (normalized phase
by N=3.45 ms) Om (ms)*

Interval I 2.7 8,=0.84¢+0.51 2.3
between 2.8 8,=0.906+0.51 1.9
the 2 3.0 8,=0.930+0.52 1.4
IPSP’s (ms)
2:1 Experimental bounds (s~ %)

313-389
2:1 Theoretical bounds (s~ 1)

317-384

*maximum phase possible.
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Fig. 3. Mean rate transformation for excitatory synapse. Postsynaptic CV 0.00 (circles) or 0.08

(triangles). a. Regular presynaptic train (CV =0.00). The delay function had a “V” shape, with the

break point at A=0.75. b. Jittery presynaptic train (CV 0.20). The MRT is practically monotonic
increasing; the delay function was “V” shaped with A=0.64.

As the interval I between the IPSP’s increased, the delay function slope increased
somewhat (from 2.7 to 3.0) while the ordinate intercept remained constant; ¢,
decreased appreciably (e.g., from 2.3 to 1.4). The delay function for 1 IPSP in these
simulations was 8§ =0.55¢+0.075.

A simple program in Basic was developed to allow more precise conclusions about
locking ratios and effects of initial phase (also see item i in Considerations Regarding
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Two Mathematical Models). With the delay function §=0.6¢ (that differed from
those in the neuromime only because its intercept was O instead of, say, .075) the
MRT showed the PS’s in Fig. 1a and, in addition, others not discernible there (or
nonexistent due to internal noise) and in the ratios of 3:4, 4:5, 5:6, 5:3, 7:4, 9:5. The
only consequence of changing the phase of the first or “initial” IPSP was increasing or
decreasing the transient time until locking was achieved.

EPSP’s — Excitatory Inputs

The mean rate transformation (MRT) for the neuromime subjected to periodic
EPSP’s showed an increasing trend with positively sloped segments with phase-
locking, interrupted by abrupt decreases (Fig. 3a, circles). No output rate was below
the spontaneous value. There were clear phase-locked segments at input: output
ratios of 1:2, 2:3, 1:1, 3:2, 2:1, 5:2, 3:1, etc. The 3:1 segment (from 1345/s to 1755/s
input rates) was broader than the 2:1 (715/s to 1000/s) and this in turn broader than
the 1:1 (295/s to 395/s). “Paradoxical” segments (PS) for EPSP regular inputs are
those of negative slope; these are the abrupt downward jumps in Fig. 3a (circles).
Jumps were smoothed out when the postsynaptic pacemaker had a small intrinsic
jitter (interval CV 0.08) (Fig. 3a, crosses), mimicking living pacemaker cells. This
small postsynaptic jitter also caused a decrease in the width of the segments and some
(e.g., the 1:2, 2:3, 3:2) practically disappeared. When the excitatory input train was
irregular, with interval CV 0.20 or larger, the PS’s disappeared and the whole MRT
(Fig. 3b, CV=0.20) became monotonic with steep positive slopes within the 1:1 and
2:1 ranges, and a plateau-like region in between.

The delay functions, involving advances or negative delays, resulted in
approximately “V” shaped graphs, decreasing steadily from the origin up to a point A
after A every EPSP caused a postsynaptic impulse, i.e., the positively sloped branch of
the “V” had a unitary slope reaching zero delay for a normalized ¢ equal to 1. A was
0.75 for Fig. 3a and 0.64 for Fig. 3b.

A mathematical model (Segundo and Kohn, 1981) of the influence of regular EPSP
trains upon a postsynaptic pacemaker made the following basic assumptions: (i) an

Table 3

Locking ranges of EPSP rate for a pacemaker with period N =1, synapse with A=0.6. Computer
simulations.

locking ratios bounds width
1:3 0.333-0.385 0.520
2:5 0.422-0.448 0.260
1:2 0.500-0.625 0.125
2:3 0.730-0.813 0.830
1:1 1.000-1.667 0.667
3:2 2.083-2.326 0.243
2:1 2.674-4.000 1.326
7:3 4.115-4.274 0.159
5:2 4.310-4.739 0.429

31 5.025-6.993 1.968
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EPSP causes a shortening of the postsynaptic interval within which it falls with
subsequent periods being unaffected; (ii) the delay function has a “V** shape, the first
branch (from phase 0 to A) with a slope of (A—N)/N, and the second (from phase A
to 1) with a slope of 1. These requirements were satisfied by the neuromime
embodiment, and the model’s predictions for the locking bounds agreed well with the
experimental ones (Fig. 3a, 1:1, 1:2 segments).

A computer program in Basic simulated the interaction of periodic EPSP’s with a
pacemaker for several values of L. Phase-locking was observed for all input rates.
Table 3 shows for L =0.6 some of the locking ratios and their respective EPSP rate
bounds; other locking ratios were found, e.g., 7:18, 11:19, 5:8, 7:11, 7:10, 13:5, 9:4,
The initial phase was influential only in determining the speed of convergence
towards the locked situation. The same general results were obtained for A<0.5 (see
Discussion).

4. Discussion

General

The neuromime and computer simulations suggested that an enormous, perhaps
infinite, number of acceleratory and phase-locked segments exist in the steady-state
relations between the average intensity of synaptically connected pacemaker cells.
Increasing pre- or postsynaptic interval variability, or “jitter”, gradually disrupted
these segments, with the 2:1 and then the 1:1 disappearing last. The existence of
“paradoxical” acceleratory (deceleratory) segments for IPSP’s (EPSP’s) occurred for
presynaptic irregularities with interval CV’s up to 0.20. This was true in a variety of
situations, i.e., with or without post-tetanic hyperpolarization or recurrent inhibition,
and for different synaptic efficacies (as measured by the slope in the delay
function).

Simulations cannot give a complete description of the behaviour of a system, as
they analyze only a subset of all possibilities. Mathematical analyses, however,
provide more generality, and it is likely that a fairly large class of models (to which the
leaky integrator belongs) will show paradoxical segments for input train CV’s up to
0.20. Therefore, it would be worthwhile to derive analytically the behaviour of a leaky
integrator or some more general model subjected to inputs of different CV: this seems
a formidable task, however, as even the analytical treatment of the simpler case of
exponentially distributed input intervals is complicated (e.g., Cope and Tuckwell,
1979).

IPSP’s

The simulations resembled the biological data (Kohn et al., 1981) by showing the
zigzag MRT with locked paradoxical segment PS’s alternating with interposed ones
for presynaptic interval CV’s up to 0.20. The neuromime showed similar findings
when both the pre- and postsynaptic pacemakers were spontaneously jittery (CV’s up
to 0.10). Since this kind of variability is not rare in nature, this suggests that a large
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number of cells will show locking and paradoxical acceleratory effects. Even though
the neuromime and computer embodiments showed for regular inputs a large
number of PS’s, even a small postsynaptic variability equal to that in crayfish SRO
(CV 0.03) was sufficient to reduce or wipe out the secondary PS’s, which therefore
probably are infrequent in nature.

The general agreement of results with the neuromime and the crayfish SRO implies
that the simple leaky integrator pacemaker (a lumped parameter model) with its
short-span memory and provided with a simple synaptic input is a sufficient
representation of the mechanisms that account for the MRT and phase-locking across
that inhibitory synapse: i.e., other dynamic factors like post-tetanic hyper-
polarization, refractory periods, dendrosomatic propagation, trigger zone
characteristics, do not alter the general qualitative aspects of its performance.

The behaviour at high inhibitory rates indicated that if a presynaptic cell is
moderately jittery (e.g., CV 0.20) it can effectively stop the postsynaptic cell for a
“long time”, but will not if very jittery (e.g., approximately Poisson) (Fig. le).
Obviously there are other influential parameters not considered in the simulations,
like complex synaptic dynamics involving neurotransmitter depletion from the
available pool. A less obvious way of stopping a pacemaker, and probably one less
likely to occur in nature due to its stringent requirements, is through an adequately
effective single PSP or burst of PSP’s that occur at an appropriate phase. Such
specially weighted and timed PSP’s would drive the postsynaptic neuron away from
its pacemaker mode towards a non-discharging condition: i.e., it would drive the
system away from oscillations in a limit cycle towards rest in the attraction basin of
the asymptotically stable equilibrium state (Best, 1979; Guttman et al., 1980;
Winfree, 1980).

Recurrent inhibition is an important part of motoneuron circuitry, and it is
conceivable that in certain states (e.g., during locomotion) a recurrently inhibited
pacemaker neuron receives an almost periodic synaptic influence: hence the interest
of the study of paradoxical segments and locking under RI. The practically linear
relation between output mean rate and the RI phase in the neuromime mimics well
that observed in the crayfish SRO preparation (Vibert et al., 1979). However, when a
similar recurrent inhibition experiment is done with the heart-efferent vagal system,
at some phase values of the RI a pronounced sinus arrhythmia ensues (Levy, 1978).
The RI simulations showed also that pacemakers with less regular discharges, e.g., of
a long-short type (deterministic RI with k = 2) or more random type (pseudorandom
RI) also present paradoxical accelerations and locking with respect to an inhibitory
presynaptic pacemaker. This result makes sense if we think of the postsynaptic
recurrently inhibited cell as a jittery pacemaker having a low interval CV, e.g., below
0.10 or 0.20 (see Results). The PS’s result narrower for the pseudorandom RI because
it yields a more jittery equivalent pacemaker than the deterministic RI
Summarizing, RI caused only quantitative changes in the general behaviour of the
synaptic interactions; it must be kept in mind, however, that different types of RI can
lead as well to marked qualitative changes (Tuckwell, 1978).
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EPSP’s

These comments on PS’s and locking of pacemakers subjected to periodic EPSP’s
will refer mainly to the simulation results as they relate to a mathematical model
(Segundo and Kohn, 1981) since expérimental data from living preparations are
lacking. The basic postulates of the mathematical model were satisfied by the
neuromime and computer embodiments, and the simulations reproduced well its
predictions for input rates up the 2:1 PS. For example, the mathematical model
predicts 1:2 and 1:1 bounds of 149-170/s and 298-397/s, respectively, for A=0.75.
The formulas for 1:r+1 locking are: ((r+ 1)N) ™~ !<fg<@N+2A)~! where fg is the
presynaptic rate. The 2:1 PS and others at higher rates are difficult to treat analytically
and simulations provided new results. The MRT of Fig. 3a (circles) suggests that the
widths of PS’s of the s:1 type (e.g., 2:1, 3:1, etc.) increase with “s”, i.e., when there are
more EPSP’s per postsynaptic period. There must be some maximum rates, of course,
because of the pre- and postsynaptic refractory periods. For more irregular inputs
(e.g., CV 0.20 in Fig. 3b), a wide plateau was noted where, from approximately 700 to
1000 input pulses/s, the postsynaptic cell has practically the same rate of about 450/s:
i.e., where there is a postsynaptic insensitivity to changes in the presynaptic mean
rate.

The “V”-shaped delay functions utilized in the simulations approximate
reasonably well the experimental findings in crayfish SRO neurons subjected to pulse
depolarizations (except for a smooth transition from one branch to the other of the
“V™) (Hartline, 1976) and in Aplysia cells with EPSP’s (except for delay at small
phases) (Segundo and Perkel, 1969). Bursting living cells have delay functions that
show delays and advances for a single type of PSP (Pinsker, 1977; Stein, 1974). If the
delay functions in our simulations remained nearly linear, but with negative delays
(i.e., advances) for small phases and positive delays for large (i.e., 8= A¢+B with
B<0, A>0), the mathematical model of Segundo (1979) predicts certain postsynaptic
rates below and others above the spontaneous value.

5. Considerations Regarding Two Mathematical Models

(Items i to iv: Segundo, 1979; item v: Segundo & Kohn, 1981)
The diagrams of the spike trains in Fig. 4a provide the following difference
equation:

a ¢i+1=I—N@+1)+¢;—5(¢)

whereIand N are, respectively, the pre- and postsynaptic natural pacemaker periods,
ris the number of output pulses per period of the input, 8(¢) is the delay function. The
delay is positive for IPSP’s that lengthen intervals, or negative for EPSP’s that shorten
them. The new phase (¢;+;) versus old phase (¢;) graph is a representation of the
equation above, and differs for different delay functions (e.g., Fig. 4b, 5d). The 45°
line represents ¢;+;=¢; where it is crossed by the ¢;+X¢; curve there is an
equilibrium point or “locking phase” because that phase, once achieved, will
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Fig. 4. Mathematical model for presynaptic pacemaker inhibiting a postsynaptic pacemaker.
a. Regular pre- and postsynaptic pacemakers. The natural periods were I for the former and N for the
latter. A presynaptic spike at phase ¢; causes a delay 5(¢;). Afier the perturbed period the postsynaptic
pacemaker discharges again with a period N. b. New phase ¢;+,, old phase ¢; diagram for a linear
delay function 8 = A¢ + B with 1<A <2, For certain values of the input period I, there are two stable
equilibrium phases (e.g., ¢5 and ¢y). ¢5 is reached if the initial phase ¢;<M, and ¢} otherwise (see
text). c. Hysteresis. Starting from the lowest line in the graph with a 1:r locking, increases in I raise the
line and when B reaches a point N, 1:r+ 1 locking ensues. If thereafter I decreases, the 1:r locking will
be achieved again only after the line goes below line 0B. d. Hysteresis in the MRT. As the I for the 1:r
to Lir-+1 jump occurred for a larger value than the I for 1:r+1 to l:r, as shown in Fig. c., the
hysteresis is revealed in the transition between the two PS’s.
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perpetuate itself. If the magnitude of the slope of the ¢; + | X ¢; curve at an equilibrium
point is less than 1, then the equilibrium is asymptotically stable and otherwise it is
unstable (Bernussou, 1977); the detailed use of these graphs to analyze locking is
illustrated elsewhere (Segundo and Kohn, 1981).

(i) A sufficient condition for hysteresis in a model (Segundo, 1979) is that the slope of
the delay function for IPSP’s be between 1 and 2.

When the delay function is of the form 8(¢0)=A¢+ B with 1<A<2 equation (1)
givesusa ¢;+ X ¢; curve with a negative slope 1-A, as represented in Fig. 4b by curve
gy; two other curves are shown also. The position of each curve depends on the
constant term I —N(r+ 1) —B (obtained from equation (1) by substituting the delay
by its expression): hence, variations in the input period I shift the curve vertically.
The main quadrant in Fig. 4b corresponds to the 1:r+ 1 case; a negative new phase
¢;+1 means that the next input pulse occurred before the (r+ 1)th output pulse (see
Fig. 4a), which in turn implies a 1:r case, as indicated to the left of Fig. 4b. If the input
period I is such that curve ey is obtained, only one locking phase (point y in Fig. 4b) is
possible in the 1:r+ 1 rate relation. If the input period is smaller, however, leading to
curve af, two locking phases would be possible, one ¢3in the 1:r+ 1 rate relation and
the other ¢yin the 1:r rate relation. The system will converge to ¢xand hence,a 1:r + 1
locking, if the initial phase is to the left of point M; otherwise, it will converge to ¢y
and hence a 1:r locking.

The possibility of two equilibrium phases thus leads to hysteresis. Indeed, if
starting (Figs. 4b,c) at ¢ with a 1:r locking, the input period I is increased, the line af
will be shifted upwards and, when point P surpasses N, a 1:r+1 locking will be
installed. If, starting from this 1:r+ 1 locking, I is decreased, the 1:r+ 1 relation will be
kept until & meets the origin, but as soon as it goes below it, a 1:r locking ensues. This
jump happens for a lower I than the one that caused that from 1:r to L:r+ 1 (Fig. 4¢).
Consequently, a clear hysteretical behaviour occurs even with such simple models
(Fig. 4d). The required values of A (i.e., between 1 and 2) have been reported, for
example, when there are several IPSP’s between two successive pacemaker impulses
(Kohn et al., 1981). Hysteresis in the region between paradoxical segments was
described (Vibert et al. , 1981) in the driving of phrenic nerve discharges by forced
ventilation in the cat; although in some of those experiments, hysteresis could be due
to the mechanism described here since A values were in the range of 0.3-1.4, other
complexities of the dynamics involved could be very relevant. Moulopoulos et al.
(1965) described phase-locking and hysteresis in the dog ventricle subjected to
current pulses, but the corresponding delay function is lacking.

To complete the present analysis, the bounds of input periods I and rates fj= 1/1 for
which the 1:r+ 1 locking is independent of the initial phase, and those within which
locking depends on the initial phase will be derived. To obtain the former, ¢y and ¢7
must not exist (Fig. 4b): hence, at ¢;=0¢; =0 (or ¢; =, =N) one must have 0<¢;<N,
resulting in,

[r+2)N+B)~ I<fi<[c+AN+B] !
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Between the lower bound of 1:r+ 1 locking given by this equation and the upper
bound of 1:r+2 locking [(r+1+A)N+B]~., there is a range where locking is
determined by the initial phase. From Fig. 4b, it can be seen that, if the initial phase is
¢;>M’, phase-locking is 1:r+ 1, and otherwise is 1:r+2. M’ can be determined by
making ¢, =N in the original difference equation (1):

M =[I-(r+2)N—-BJ/(A—1)

So, if the presynaptic rate fj is between [(r+1+A)N+B] ! and [(r+2)N+B]~},
then lir+1 locking will ensue if the initial phase ¢; is larger than
(- (@+2)N—B)/(A—1); and l:r+2 otherwise. These bounds are illustrated in
Fig. 5a, where the ordinate is the initial phase and the abscissa the presynaptic rate,
with the 1:r+2 and lir+1 locking regions indicated by vertical and horizontal
shadings, respectively. Fig. 5b shows the computer-simulated discharges of a
pacemaker with a period N=1 and delay function 6=1.3¢ (i.e., 1<A<2). The
presynaptic discharge has the same period I=2.1 for both pairs of postsynaptic trains
and the critical value of M’ is 0.333: in the upper one, the initial phase ¢, is 0.3, and
there is 1:2 locking; in the lower one, ¢; is 0.5 and there is a 1:1 locking. This
dependence on the initial phase means that if the two pacemakers are locked in a
1:r+ 1 ratio with an equilibrium phase ¢%, an extra single impulse from a third neuron
that causes a PSP in either pacemaker can shift the phase-locking from l:r+1 to
1:r+2, and vice versa.

(ii) Delay function with an inverted V shape (Fig. 5¢c)

This delay function (Fig. 5¢) occurs in some crayfish experiments (Kohn et al.,
1981, Fig. 8¢): c is the phase (<N) at which the delay function has a maximum. Using
this delay function in the general difference equation (1) gives the new phase-old
phase graph in Fig. 5d which again will be displaced upwards if the input period I
increases. For the values of I for which the curve intercepts the ¢; + | = ¢; line, there are
two locking phases for 1:r+ 1 locking, but only one is stable (¢;) because the slope at
the other (¢,) is larger than 1. The graph shows also that no matter what the initial
phase is (e.g., between cand N), there is convergence after some iterations to the stable
equilibrium phase. Therefore, to determine the range of input rate f; where there is
1:r+ 1 locking, it is necessary to look at the extreme positions of the ¢; 41 X ¢; curve
that still produce a locked phase ¢, i.c., an intersection with the 45° line. The
minimum I, where ¢;+1=¢;=0, is equal to B+(r+1)N, the maximum, where
di+1=0;=Cc, is equal to B+ Ac+(r+ 1)N. In terms of rates (1/I):

[+ 1)N+B+Ac]~I<ff <[B+(+ )N~ L r=0,1,2...

These new bounds were used in Kohn et al. (1981) to take into account these types of
delay functions, and resulted in improved agreement with experimental data from
crayfish SRO.
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Fig. 5. Mathematical model for presynaptic pacemaker inhibiting a postsynaptic pacemaker (cont.).
a. Dependence of locking ratio (for 1<A<2) on the initial phase ¢;. The abscissa and ordinate are the
presynaptic rate and the initial phase, respectively. Between fj and f; there is 1:r+2 locking, between
f, and f3, alocking at 1:r+ 2 for phases ¢; below the dividing line and 1:r + 1 above. Between fyand fy,
there is l:r+ 1 locking. b. Impulse discharge from a digital computer simulation (A=1.3, I=2.1,
N= 1.0). Upper pair is for ¢; =0.3 and leads to 1:2 locking; the lower pair is for ¢; = 0.50 and leads to
1:1 locking. ¢. Delay function with an inverted “V" shape. The function increases up to phase ¢ and
then decreases to the minimum delay for phase N. d. ¢;+ ;X ¢; diagram for the delay function of
item g. There is one stable equilibrium phase (¢,) to which all trajectories converge, and one unstable
equilibrium phase (¢p). fi=[+3)N+B]~,, fh=[(c+1+AN+B]"!, f;=[r+2N+B]"},
fy=[(r+AN+B]"L
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(iii) Post-tetanic hyperpolarization (PTH)

The model’s formulas for the ranges of 1:1 and 1:2 locking were in good agreement
with the neuromime without PTH (see Table 1); when they were used for simulations
with PTH (Table 1), however, marked discrepancies occurred in the lower bounds
(24% and 19% for 1:1 and 1:2, respectively). As explained in Methods, PTH causes a
rebound interval shortening or rate increase (e.g., Fig. 1 in Kohn et al., 1981). The
postsynaptic spontaneous interval that provides better approximations is the
rebound one N’ and not the natural one N corresponding to the unstimulated case.
N’, measured at the onset of the rebound, brought the theoretical bounds to within 5%
of the simulated ones (see Table 1), a considerable improvement over the uncorrected
calculations.

(iv) The 2:1 locking

The mathematical model did not predict accurately the bounds of the 2:1
paradoxical segment from the crayfish and neuromime data. An analysis with the
neuromime clarified certain issues. Delay functions were evaluated for pairs of
IPSP’s, each with the particular intervals I 2.7 ms, 2.8 ms, or 3.0 ms, all of which
were within the I’s in the 2:1 PS and the first and third close to its extremes. Because
all three functions showed almost equal A and B values, their average was used for the
theoretical predictions. The three functions differed in their domain of definition, i.e.,
in the maximum phase ¢ (Table2). The three values of ¢, suggested an
experimental close-to-linear relation to I, but more points would be needed for a
strong assertion: hence, instead of using the estimated linear fit, the theoretical
relationship between ¢, and I was derived. By definition, ¢y, is the maximum phase ¢
such that ¢ +I=N+ 3§, assuring that the second IPSP of the pair still falls before the
next action potential.

Therefore
O +1=8,+N
Since 8n =A0m + B; where A and B, are the parameters for 1 IPSP,
N+B; 1
2 = - I
V) Om 1—A, 1-A

The relation between ¢, and I is indeed linear as suggested in the simulations. Let us
define

N+B;
3 F=—=—,
3 1A,
: 1
4 E=-— ,
C)) T—A;
50 (2) becomes

(2A) ¢m=F+IE.



120 ANDRE F. KOHN AND JOSE P. SEGUNDO

The average delay function for two IPSP’s, denoted as 8, =A,¢+ B, is found by
taking average values of A’; and B, from the experimental delay functions (Table 2).
Computing the locking phase from (1) and taking into account that for 2:1 locking,
two input periods are involved:

pr=A=N=B,
A
The locking phase ¢*, assuming 0<A,<1, will have to be between 0 and ¢, for the 2:1
PS, and using (2)

0<M.__B2 <F+IE

A;
which, using f;= 1/I for the input rate, leads to
2—A-E 2
5 —= 27 cfi<—=—
©) N+B,+A,-F | N+B,

The values of F and E can be computed from (3) and (4) and then substituted into (5),
or these equations can be combined resulting in

21-A)+A, <fe2
(1—AN+B)+A,(N+B)) N+B,

To apply (6) to the data in Results, the average delay function for two IPSP’s was
8,=0.90-9+0.51. Therefore, to compute the theoretical 2:1 bounds (Table 2),
we use (6) with: N=3.45ms, A;=0.55, B;=0.075X3.45=0.26 ms, A,=0.90,

=(.51X3.45=1.76 ms. From Table 2, it is seen that the theoretical bounds are
within 1.3% of the experimental values. Had we not taken into account the negative
slope dependence of ¢, on I (equation 2), and used the original formulation, the lower
bound would be in an error of more than 30%. The first step would be to determine
experimentally the delay function for one IPSP. The 1:1 PS bounds can be calculated
using the model of Segundo (1979), that assumes a linear delay function and 0<A <1,
as usually happens in the crayfish SRO (Kohn et al., 1981). Next a presynapticrate 1/1
is chosen that will probably be within the 2:1 region. The criterion used may be to start
by taking 1/1=1.25 56 the upper bound for the 1:1 PS, then determining
““experimentally the delay function for two IPSP’s separated by that interval I, and with
the A’; and B’y, calculating bounds from formula (6). The estimate could be
improved by taking three I values within the first approximation of the 2:1 PS,
determining experimentally the delay functions for each IPSP pair, and using the
average A; and B; and (6).

A simpler issue is the phase-locking when IPSP’s arrive as a succession of equally
separated short bursts. As the mathematical model’s postulates are satisfied, it is
sufficient to determine experimentally a delay function for the burst and with the
slope A and intercept B, compute the 1:1 bound. This was checked by the present
simulations (see Results) where A was 0.98 and B 0.737 and the 1:1 theoretical
bounds (using the formula of item ii with c=1) resulted 105/s to 164/s which
practically are those found in the simulations.

()
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(v) Use of a mathematical model to predict locking bounds for EPSP inputs

The presynaptic rate bounds for 1:r+ 1 locking in a mathematical model (Segundo
and Kohn, 1981) are

[(c+ DN] ™ I<feg<[rN+A] !

A is the smallest phase at which the EPSP causes an immediate postsynaptic action
potential. For A=0.6 the fg bounds are:

0.3333-0.3846 for the 1:3 locking ratio, 0.5000-0.6250 for the 1:2, and
1.000-1.6666 for the 1:1. These values are practically the same as those found in the
simulations with the same A (see Table 3). There is so far no biological test of this
mathematical model.
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Appendix 1: The Neuromime Circuit

Fig. A.1 shows the circuit schematic of the neuromime, with functional blocks
surrounded by dash-dot lines. The postsynaptic “‘pacemaker” is represented by the
2uF capacitor which is charged by the SOKCQ trimpot connected to the 5V voltage
source. The input of the monostable integrated circuit adds an equivalent resistance
R; in parallel with the 2uF capacitor and hence the time constant RCisgivenbyR;in
parallel with the trimpot times 2uF resulting in about 6 ms for 300/s output
spontaneous rate. When the capacitor voltage reaches the threshold (about 2V) of the
Schmitt-trigger input of the monostable integrated circuit, the latter fires a pulse of
about 30 ps (the “action potential”) which resets the capacitor to an initial voltage
around 0.6V. After this, as the voltage source is constant, the same exponential
growth towards threshold ensues and therefore the same inter-pulse interval will
repeat itself, i.e., a periodic or “regular” train is generated. As is common practice in
analog and digital simulations, the voltages were scaled to convenient values, e.g.,
while in a neuron the pacemaker potential could vary from —80mV to —60mV in
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Fig. A.1. Neuromime circuit diagram. The postsynaptic pacemaker is of the leaky integrator type and

the summation of noise at point A (on the 2uF capacitor) results in intrinsic postsynaptic jitter. Post-

tetanic hyperpolarization (PTH) is introduced by closing switches swl and sw2. Deterministic

recurrent inhibition (RI) is introduced by closing switches sw3 and sw4 to position I and pseudo-
random RI to position IL.

the neuromime it goes from 0.6V to 2.0V. The inhibitory synapse is implemented by
transistor T, whose emitter resistor (50€2) makes the trough of the IPSP less hyper-
polarizing when the capacitor voltage is more positive yet keeping the IPSP size larger
than that for lower capacitor voltages (i.e., more negative membrane potentials),
mimicking natural behaviour. These characteristics also mimic the crayfish SRO
inhibitory synapse, where chloride seems to be the main ion involved and the reversal
potential is slightly more negative than the resting potential (Ozawa and Tsuda,
1973).

An effect similar to that of an electrogenic pump causing post-tetanic hyper-
polarization is introduced by closing switches swl and sw2. Every output (i.e.,
pacemaker) pulse discharges slightly the 1uF capacitor through transistor Tj,
transistors T4 and T's providing gain and level adjustment. When the pacemaker rate
decreases, the 1uF capacitor is discharged less so its voltage increases, and after being
amplified it is summed to the 2uF capacitor of the pacemaker, tending to increase its
firing rate (and thus correct for the initial decrease). “Rebound” (Kohn ef al., 1981;
Kuffler and Eyzaguirre, 1955) occurs in the neuromime because the output rate is low
during inhibition and hence the 1puF capacitor has a high voltage. When the stimulus
is turned off, the capacitor will slowly decay to its pre-stimulus value that determined
the spontaneous rate of the pacemaker. During this time, the higher capacitor (the
1uF one) voltage will cause an overshoot (rebound) in the pacemaker firing rate. The
components used for the PTH in Fig. A.1 were optimized for a presynaptic range of
100/s to 310/s.
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For simplicity’s sake, the feedback or recurrent inhibition (RI) was fed to the same
transistor (T5) that plays the role of “synapse”. With switches sw3 and sw4 connected
on position I, every kth pacemaker pulse will result in an RI pulse applied to T,. With
sw3 and sw4 on position II, the Pseudo-Random Decision Element explained in
Appendix 2 gives out an RI pulse for an average of k pacemaker pulses.

An excitatory synapse was simulated in the neuromime by connecting the collector
of the PNP transistor T¢ to point A, thus enabling charge to be added to the 2uF
capacitor when an input pulse happens at transistor T (Fig. A.2).
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Fig. A.2. Excitatory presynaptic terminal for inclusion in neuromime. On the left we show the 2uF

capacitor (point A) from the main circuit of Fig. A.1, on the right the “EPSP circuit”. The

presynaptic “action potential” is applied to the base of T7 through an RC circuit and T6 will add the
EPSP to the voltage at point A.

Appendix 2: The Pseudo-Random Decision Element (PRDE)

Figure A.3 shows a simplified block diagram of the PRDE instrument which has at
its heart a pseudo-random binary sequence (PRBS) generator composed of a 16-stage
shift-register with a convenient exclusive-OR feedback so that only after 2! — 1 input
pulses the same number will appear in X, By setting the binary number Y through
conveniently pre-programmed switches, the digital magnitude comparator will signal
at its output the relationship between the two binary numbers X and Y. Whenever
X>Y its output will go to 1 and enable the next input pulse to appear at the output
(through the AND gate). For example, if one out of every two input pulses are to be
outputted in the average, the switches would be set to 2! and the number X will
achieve values above and below 2! in a pseudo-random manner. It is almost as if at
each input pulse a Bernoulli experiment takes place to decide if the next output pulse
will be gated to the output, or will not.
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Fig. A.3. Pseudo-random decision element. Each input pulse (from the postsynaptic pacemaker)

clocks the 16-stage shift register pseudo-random binary sequence (PRBS) generator. The 16-bit word

is digitally compared with a word set by switches and if the latter is smaller than the former, the next
input is allowed to pass to the output through the AND gate.



