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Dendritic Transformations on Random Synaptic
Inputs as Measured from a Neuron’s Spike
Train—Modeling and Simulation

ANDRE FABIO KOHN

Abstract—Extracellular spike trains recorded from central nervous
system neurons reflect the random activations from a multitude of pre-
synaptic cells making contacts mainly on the extensive dendritic trees.
The dendritic potential variations are propagated towards the trigger
zone where action potentials are generated. In this paper, two dendri-
tic propagation modes are modeled: passive and quasi-active. Synaptic
bombardments are modeled as being applied apically, somatically, or
distributed over the dendritic tree. The resulting simulated neuronal
spike trains are analyzed by point process techniques. Dendritic inputs
resulted in a tendency for random bursting, interspike interval histo-
grams with a long tail and coefficients of variation larger than one. The
autocorrelation histograms reflected dynamics of the dendritic tree and
they were able to discriminate between a passive or a quasi-active
propagation mede and between dendritic and somatic synaptic inputs.

I. INTRODUCTION

EURONS in central nervous systems are known to

receive a very large number of synaptic contacts [6],
[9], most of them occurring on the neurons’ extensive
dendritic trees, including the apical regions [33]. A noise-
like membrane potential is recorded from the soma [11]
in response to the ongoing presynaptic activations. This
noise-like soma membrane potential is a result of the elec-
trical filtering effect of the dendritic tree and, therefore,
synaptic inputs concentrated at different parts of the den-
dritic tree will cause different noise processes. These, in
turn, will cause statistically different spike trains to be
discharged by the trigger zone. These spike trains are
often the only data available for the neuroscientist be-
cause in many electrophysiological experiments dealing
with central nervous systems it is only feasible to record
extracellularly. This is even more true with today’s em-
phasis on simultaneous multiunit recordings with muiti-
channel microelectrodes [12], [13]. Therefore the tech-
niques of spike train analysis [18], [25], [26] (this is a
very partial list) are fundamental for providing informa-
tion about the connectivities and dynamics of neuronal
assemblies. Besides the widespread use of point-process
analysis as a tool for suggesting neural pathways or show-
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ing hidden periodicities in a train of action potentials, an-
other (less frequent) use has been in system identification
[3], [5]. These identification techniques rely on cross-in-
tensity or cross-correlation measures and, therefore, they
assume the availability of both the inputs and the output
of a specific neuron. However, as the inputs are not al-
ways experimentally available, it is important to have
techniques based only on the output spike train to provide
inferences on the neuron’s functional microanatomy and
physiology. Functional microanatomical inferences might
include information about the region of the dendritic tree
where most of the activated synapses make contacts dur-
ing a certain behavior or internal state of the animal being
investigated. These inferences may be of much help as it
is very difficult to obtain sufficient amount of data about
the microcircuitry of neuronal assemblies using fine ana-
tomical methods, e.g., using a combination of horserad-
ish peroxidase and electron-microscopy [34]. From a
physiological standpoint, the inferences could include, for
example, information about the type of dendritic trans-
formations occurring on the multiple synaptic inputs and/
or about the type of encoding carried out by the trigger
zone. This task of inference from the output spike train
recorded from a neuron is obviously not easy as it must
necessarily rely on neuronal models. A large amount of
literature has dealt with a few statistical descriptors of
spike trains generated by different neuronal models, usu-
ally of the fixed threshold type, subjected to white-noise
or Poisson-process inputs. These inputs have been used
to mimic the random synaptic bombardment received by
a neuron without considering the filtering effects of the
dendritic tree (a representative list of references may be
found in [20]). Tuckwell and Walsh [38] approached the
mathematically difficult problem of solving the stochastic
passive cable equation subjected to a two-parameter (space
and time) Poisson process. The problem of first-passage
time through a boundary, leading to an interspike inter-
val, was not amenable to exact analytical solution and
therefore different numerical methods were proposed to
solve the equations. A single interspike interval histogram
(obtained by simulation) was shown. Tuckwell ef al. [39]
using different simulation methods showed values of mean
intervals, coefficients of variation, and histograms of first
passage times to a fixed threshold of the membrane po-
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tential at one end of a passive cable subjected to white-
noise input applied at different distances.

In the present paper, the transformations caused by a
passive or quasi-active dendritic tree on the synaptic bom-
bardments occurring either apically or distributed all over
are compared with the results obtained for synaptic bom-
bardment directly on the soma. The effects of the synaptic
inputs are measured on the spike train elicited by the tar-
get cell. A lumped parameter model is employed by ap-
proximating the dendritic system by convenient linear fil-
ters and by approximating the trigger zone by an RC model
with an exponential threshold function. Several point-pro-
cess statistics are used to analyze the trigger zone spike
train. The results and concepts emerging from this work
should be of help to both experimental and theoretical
neuroscientists trying to gain more knowledge about the
nervous system at the cellular or cellular ensemble levels.

II. THE MATHEMATICAL MODEL AND ITS ASSUMPTIONS
A. Basic Framework

The model neuron is divided into two compartments: 1)
the dendritic tree and the cell body or soma, 2) the trigger
zone on the proximal region of the axon near the soma.
As the modeling effort is oriented towards central neurons
receiving a very large number (many thousands) of syn-
apses, the postsynaptic potential due to a single synapse
is small. The resulting local membrane potential due to a
large number of randomly activated synapses is approxi-
mated by a white Gaussian continuous time random pro-
cess. Experimental results seem to confirm the Gaussian
hypothesis [11]. This membrane noise with a flat power
spectral density is a first approximation to the resulting
local haphazardly occurring membrane depolarizations
and hyperpolarizations due to synaptic actions and has
been used in many stochastic neuronal models [20, and
references therein]. Thereafter, the postsynaptic poten-
tials from the multiple synaptic inputs are filtered by a
dendritic/somatic transfer function model. As a first ap-
proximation, it is assumed that the individual (small)
postsynaptic potentials summate spatially and temporally
in a linear fashion. The output from this filter is the input
current to the trigger zone. The latter is modeled by a
parallel RC circuit whose output voltage controls the gen-
esis of action potentials. When the output voltage, from
now on called the membrane potential, reaches a thresh-
old value Vy, the capacitor is instantaneously discharged,
thereby resetting the membrane potential. An action po-
tential firing is associated with every membrane potential
resetting. The threshold can be chosen either as a constant
or an exponentially varying function. In the latter case an
absolute refractory period AR is followed by the threshold
function V,, = 0, + (8 — 0.) exp [—(t — AR)/7,.]
where 6, is the steady-state threshold value, 6y, is the peak
threshold value following the absolute refractory period,
and 7. is the threshold decay time constant. The dynamic
description up to the time of a threshold crossing is given
by the stochastic differential equation

Cdx(t) + (R) 'x(¢) dr = i(1) dt
X(t) < Vzh

(1)
x(t,) = x,,

where x (1) is the membrane potential, (R)™" is the mem-
brane conductance, C is the membrane capacitance, i(t)
is the output current from the dendritic/somatic model, x,
is the resetting or initial membrane potential, Vy, is the
threshold potential. When the multiple synaptic inputs
happen on the soma, the dendritic model is bypassed (as
a first approximation, the input impedance of the dendritic
tree will be neglected) and, therefore, i(¢) is modeled as
a white Gaussian noise and formally i () dt in (1) should
be written as dW (1) where W(t) is a Wiener process. This
type of model is sometimes called the ‘‘leaky integrator’’
model and has been used in many theoretical works in
neurobiology (e.g., [14], [31]). The inclusion of an ab-
solute refractory period and an exponentially decaying-
relative refractory period render the trigger zone model
more similar to biological reality than the constant thresh-
old assumption. The models used in the present work are
first approximations to reality and, hence, the results ob-
tained should be interpreted from a qualitative standpoint.

From the foregoing description, it follows that the neu-
ron model has a continuous time/continuous state space-
random input while its output is a continuous time point
process. The neuron’s input random process is white noise
and if applied on the dendritic tree (away from the soma)
it will have its power spectral density shaped by the den-
dritic/somatic transfer function H(s) before reaching the
trigger zone. The next section will describe the types of
dendritic transfer functions employed in the simulations.

B. The Dendritic/Somatic Models

The first two models described below, called passive
and quasi-active, represent the effects of synaptic inputs
localized on dendritic shafts at a certain electrotonic re-
gion from the trigger zone. The third model, called dis-
tributed, represents a distributed injection of synaptic cur-
rents along the entire dendritic tree.

1) Passive Model: This first model describes the pas-
sive propagation of postsynaptic potentials along the den-
drites and soma. The simplifying assumption is that the
dendrite/soma dynamics may be approximated by that of
a single cable [28] with individual postsynaptic potentials
summating linearly. The starting equation is the standard
cable partial differential equation. By using convenient
boundary conditions [23], the transfer function relating
the output current from the cable with the synaptic input
current applied at the cable’s origin is

H(s) = sech l\/l + s‘r)—l\} = sech [V] + s7 aL,]
(2)

where 7 is the membrane time constant, A is the space
constant, / is the cable length, L, is the electrotonic length,
and « is the normalized position along the cable, taking
values between 0 (basal) and 1 (apical).
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The amplitude response function corresponding to (2)
for several physiologically meaningful parameter values
shows a low-pass characteristic with a practically flat
passband and a high-frequency decay with an increasing
slope. For a frequency range from O up to about 5 times
the —3 dB cutoff frequency, this frequency response func-
tion may be reasonably well approximated by a first-order
transfer function. In this way, the output from this passive
dendritic/somatic filter having as input a white Gaussian
random process is the well-known Ornstein-Uhlenbeck
random process. As a biological example, it is shown in
[11] that the noise process recorded at the soma of cat
motoneurons due to synaptic bombardment is Gaussian
with an exponential autocorrelation function.

2) Quasi-Active Model: This second model represents
the case when the dendritic/somatic membranes are in a
quasi-active state [16]. The old view of the dendrites and
soma was that they were always passive [35]. Today it is
known that, in some types of neurons, dendrites and soma
may have a nonpassive role in information propagation,
having either a quasi-active or even active behavior. The
quasi-active model used here is derived from the work of
Koch [16] where a linearized approximation was obtained
for the nonlinear membrane model of Hodgkin and Hux-
ley. The resulting transfer impedance amplitude as a func-
tion of frequency is given in his Fig. 6 and the corre-
sponding Laplace inverse transform is plotted in his Fig.
7. By terminating the cable with a low impedance due to
the loading from the soma and/or axon, Koch’s [16] fig-
ures were used as an approximate estimate of the cable’s
transfer function (current at end/current at origin). As
there were no mathematical expressions given in his pa-
per, H(s) was estimated by taking measurements (like
asymptotes, Q factor of resonant peak, peak amplitudes,
and zero crossing times of the impulse response) directly
from his figures. The initial estimates of parameter values
were improved upon using an interactive computer pro-
gram. The resulting final transfer function is

1282115 + 247082.82 1200
(8) = "7 4535 + 205200 5 + 5000°

3) Distributed Model: This third model, derived from
the passive model mentioned before, describes the power
spectral density at the cable’s output due to synaptic bom-
bardment along the whole passive dendritic tree and soma.
It may be shown that for large «, i.e., for apical synapses,
the cutoff frequency and the dc gain are smaller than for
small «, i.e., for basal or proximal synapses. Therefore,
the power spectral density at the output of the filter de-
scribed by (2) may be approximated by

g(w.)

w2+wf

(3)

S(w) = (4)
where g (w,) is a monotonic function increasing faster than
(w.)? (s0 as to make the dc gain larger for synapses nearer
the trigger zone). To keep the mathematics simple, the
following synaptic distribution will be assumed: p(w.) =

2/g(w.) 7 for w, in the (arbitrary) range Q,, @, and p (w,)
= 0 elsewhere. This distribution assumes an increasing
number of synaptic contacts towards the distal parts of the
dendritic tree as a whole. The resulting power spectrum
Sr(w) of the random process at the end of the passive
cable model due to the randomly occurring postsynaptic
potentials distributed according to the (spatial density)
function p(w,) is S7(w) = 1/wfor Q, << w << Q5.

With the simplifying assumptions given above, the re-
sulting power spectral density approximates a 1/f func-
tion. This 1 /f model derivation is similar to one used in
studying semiconductor noise [8]. Tuckwell and Walsh
[38] computed the power spectrum of the membrane po-
tential at one end of a cable subjected to spatially distrib-
uted white noise. They found approximately 1/f asymp-
totes at high frequencies. The upper curve of their Fig. 6
is similar to that simulated in this paper.

III. MoDEL SIMULATION

The continuous time models described above had to be
discretized in time for the digital simulations. The sto-
chastic differential (1) was numerically integrated by the
standard fourth-order Runge-Kutta method. The system
parameters were all normalized. The RC time constant was
made equal to 1 (R = 1 and C = 1) while the resetting
or initial voltage x, was always chosen equal to 0. The
nonnormalized trigger zone time constant was taken as 10
ms which is a typical value for some types of cortical cells
[22], {36]. When a constant threshold was desired, its
value was chosen equal to 1. For the variable threshold
simulations, it was assumed that the neuron had an ab-
solute refractory period of 1.4 ms (corresponding to a nor-
malized value 0.14), a peak threshold of 2, a steady state
threshold of 1, and a time constant 3.34 ms (correspond-
ing to a normalized value of 0.334). All other parameters
from the dendritic/somatic models were normalized ac-
cordingly. With the above choice of normalizing factors,
the numerical integration step size was always used equal
to 0.05.

The discrete time Gaussian white sequence was gener-
ated from a uniform U(0, 1) number generator using the
Box-Muller [4] technique with the special care of divid-
ing the variance by the integration step size. This was
done to assure that, independently of the step size, the
discrete time white sequence represented correctly the ef-
fects of the continuous time white noise.

As the objective was to compare the effects of different
trigger zone input noise currents (due to different synaptic
locations and different dendritic tree propagation modes)
on the model neuron spike train some standardization had
to be chosen. Therefore, all simulation results shown in
this paper (except for one case indicated in the text) were
run with a trigger zone input current variance equal to
0.323. However, the results were qualitatively indepen-
dent of the input variance value. One experimental argu-
ment in favor of using the same variance for apical den-
dritic or somatic inputs is that, in cat motoneurons,
EPSP’s recorded at the soma and originating from distal
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dendritic regions have similar sizes as when originating
from proximal synapses [15]. Additionally, a not uncom-
mon anatomical finding is that a single presynaptic axon
may make several synaptic contacts on a dendrite [34],
and when the contacts are on different dendritic branches
the contacts occur at approximately the same level of the
dendritic tree [7]. Different constant (dc) levels were
used for the incoming noise current. Practically all of the
simulation results shown in this paper refer to an input dc
current equal to 1.2 (the only exception being Figs. 1(c)
and 2(c) which are for dc = 0.8) although qualitatively
similar results were found for the two other values em-
ployed: 0.8 and 0.5. These dc values less than 1.0 cor-
responded to a silent cell if no other input signal was ap-
plied. The simulations with dc = 1.2 corresponded to a
cell firing spontaneously with an interspike interval of
1.792 if the threshold was a constant equal to 1, or, 1.850
if the threshold was exponentially variable with the values
given above. These dc levels may be interpreted as re-
sulting from an average of the synaptic barrage and/or
from internal mechanisms of the postsynaptic cell itself.

The derivation of the discrete time versions of each of
the three dendritic/somatic models required different ap-
proaches, as described in what follows.

1) Passive Model: Its output is an Ornstein-Uhlen-
beck process and it may be discretized exactly using the
following difference equation:

$(n+ 1) = e y(n) + J(1 =) Zuln) (5)
where h is the integration step size, w, is the —3 dB an-
gular cutoff frequency, and u(n) is a Gaussian white se-
quence of zero mean and variance o2, It is straightforward
to show that the mean and autocovariance sequences of
the output process from this difference equation are exact
samples of the corresponding mean and autocorrelation
functions from the original continuous time model. Even
though the time description is exact (at the sampling
times), the step-size & should be small enough to mini-
mize aliasing. The step size used here (0.05) resulted in
a —36 dB aliasing at half the sampling frequency, which
was considered acceptable. Somatic or basal dendritic in-
puts were simulated by a white-noise current without in-
cluding the loading effects of the dendritic tree. Apical
dendritic inputs were supposed to be applied at an elec-
trotonic length around 1.5, a typical value for many cen-
tral nervous system neurons. A computer program was
used to find the —3 dB cutoff frequency of a cable with a
membrane time constant of 10 ms and the obtained value
was about 150 rad /s and, hence, the normalized passive
dendritic tree cutoff (angular) frequency used for the ap-
ical/passive model was 1.5.

2) Quasi-Active Model: For this model, a digital filter
was designed to approximate the transfer function given
by (3). The normalized resonance frequency used in the
present simulations was 0.08. This resulted in a normal-
ized cutoff angular frequency ( —3 dB) equal about 2.0.

Hence, the cutoff frequency is about 33 percent larger than
for the passive case but with the addition of a resonant
peak. For the digital filter implementation, an IIR filter
was chosen due to its much faster operation. To minimize
distortions in the amplitude response function, the bi-
linear design method was avoided. The method of choice
was that of the impulse response invariance because with
the integration step size used in the simulations (0.05)
the resulting aliasing (the only distortion caused by this
method) was very small. Equation (3) will be rewritten
algebraically to make the formulas for the corresponding
digital filter easier to write:

(s +b) @
(s2+cs+a) (s+8)

H(s)=a (6)

The resulting digital filter using a time discretization step
T is given by (7), already in a form suitable for computer
implementation:

(1 = z7'qi[gs + gusin (2)])

) =a (1 — 2729195 + 27%s)
o
B (1 = 2z7'gq) 7)
where
qo=4d — &, q =T, g = qT/2
g3 = cos (q2), gs = (¢ — 2b)/qy
g5 =e 7, g = "

A comment is needed on the choice of T. The continuous-
time transfer function (3) has a resonant peak at about 70
Hz. The sampling interval T should be small enough to
minimize the aliasing effects. On the other hand, the trig-
ger zone model was normalized to a time constant of 1.
Therefore, the relation between the 70 Hz nonnormalized
resonance and the normalized resonance frequency is
0.05/T where 0.05 is the integration step size. For the
normalized resonance peak at 0.08 the value of T is
5.714286 x 107>, or in other words the sampling rate is
17 500 Hz resulting in a quite acceptable aliasing error of
—50 dB at a frequency equal to half the sampling rate.
3) Distributed Model: This model has at its output a
power spectral density approximately of the 1/f type, in
response to a white-noise input. Therefore, the transfer
function to be approximated digitally is of the 1/\& type,
which is nonrational in s. The impulse response of the
latter system is proportional to 1/\/; An IIR filter was
chosen again instead of an FIR to maximize the simula-
tion speed. The bilinear digital filter design method was
not used due to the fact that it requires a rational transfer
function in s and also because it distorts the amplitude
response. The design method that appeared convenient
was that of the least squares inverse design [24]. The im-
pulse response 1/\/; was sampled at every 0.0005 s,
keeping the aliasing small. A computer program calcu-
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lated the autocorrelation sequence of the sampled impulse
response (with 1000 samples). For simplicity, a fifth-or-
der autoregressive filter was chosen and the correspond-
ing Toeplitz matrix was inverted using a standard com-
puter package. The resulting digital filter was

H(z) =

correlation histogram resulted [similar to Fig. 2(a)], but
with a correspondingly shorter time constant.

A. Interspike Interval Histogram and Related Statistics

The interspike interval histogram (ISIH) for a random
presynaptic bombardment applied at apical sites of a pas-

1

The amplitude response of this filter showed a reasonably
good fit to the theoretical curve, the error being less than
2.5 dB in the range [27 /384, 67 /8] where 27 is the nor-
malized angular sampling frequency.

All simulation runs generated 1000 action potentials,
which was found to be a reasonable compromise between
statistical stability and simulation speed. Different dis-
plays of the statistical behavior of the output spike trains
were used: interspike interval histogram (ISIH) and its
logarithm; autocorrelation histogram (ACH), which is an
estimator of the autointensity function; instantaneous rate
as a function of the order (rank) of each interspike inter-
val; scatter plot of adjacent interspike intervals; serial
correlation sequence. The mean interval, the standard de-
viation, and the coefficient of variation (the standard de-
viation over the mean) were also computed for each data
file, as well as the number, times of occurrence and du-
ration of bursts within the spike train. An interval-shuf-
fling routine was used as an aid for testing if a given spike
train was renewal. The above mentioned statistics are reg-
ularly used in quantitative neurophysiological research
(e.g., [25]).

Several tests were done to check the simulation and
analysis programs including numerical error aspects. The
results of these tests indicated that the programs were giv-
ing reliable results and therefore were adequate for the
purposes of the present work.

IV. REsuLTS

The presentation of the simulation results will be di-
vided according to the type of statistical analysis, namely:
interspike interval histograms and related statistics, au-
tocorrelation histograms, scatter diagrams, instantaneous
rate, and burst detection. The results were qualitatively
independent of the type threshold function (constant or
exponentially variable) and input dc level employed [ex-
emplified in Fig. 2(c)]. Therefore, practically only one set
of simulations will be shown: the one with absolute re-
fractory period followed by an exponentially decaying
threshold (with the values already given above) and with
an input dc = 1.2. Also, the simulations to be presented
use the same 0.323 variance for the input current to the
trigger zone (with a single exception). Simulations for
lower intensity synaptic bombardment yielded qualita-
tively similar results, an exemplified in Fig. 2(c). Simu-
lation results for random synaptic bombardment applied
at half the electrotonic length of a passive dendritic tree
(not shown) were qualitatively similar to the apical/pas-
sive case. For example, an exponentially decaying auto-

(1 - 0.36976z™" — 0.15362z7% — 0.10217z° — 0.08492z ™% — 0.09945z °)’

(8)

sive dendritic tree resulted unimodal with a positive skew
and with a dead time at small intervals due to the refrac-
tory period [Fig. 1(a)]. In this and all the other ISIH’s,
the mean interval is indicated by an arrow. The 73 longest
intervals, forming a long tail in the ISIH, were not in-
cluded in the graph to allow a better picture of the region
around the peak. For an apical synaptic bombardment on
a quasi-active dendritic tree the ISIH showed a slightly
broader peak than for the passive case [Fig. 1(b)]. The
histogram showed again a long tail and part of it is not
shown (the 101 largest intervals were not included in the
plot). Fig. 1(c) shows the ISIH for simulations of apical
synaptic bombardment on a quasi-active dendritic tree
with a variance equal to 10 percent of that from the pre-
vious simulations (i.e., an input variance to the trigger
zone equal to 0.0323) and with an input dc = 0.8 (instead
of 1.2). The histogram showed again a large peak at small
intervals followed by a long tail (the ten largest intervals
were not included in the plot) but this time there was a
slight tendency for bimodality. When the synaptic random
barrage was applied at the soma the ISIH [Fig. 1(d)] re-
sulted with a broad peak followed by an exponential-like
decay. Note that the range of the abscissa is larger than
for the previous cases. The tail is quite short (the two
largest intervals were not included in the plot). The ISIH
for the synaptic inputs distributed along the dendritic tree
[Fig. 1(e)] showed a large peak at small intervals with a
long tail at large intervals (the 33 largest intervals were
not plotted).

The logarithm of the ISIH’s (figures not shown) indi-
cated that for strong dendritic inputs the ISIH’s [(Fig.
1(a), (b), (e)] are well described by two-exponential seg-
ments, while for somatic inputs the ISIH’s are well ap-
proximated by a single exponential (except for the initial
rising limb).

The mean interspike intervals (Table I) for random syn-
aptic inputs added to an input dc = 1.2 to the trigger zone,
were all smaller than the spontaneous firing period of a
cell driven solely by a de = 1.2 (i.e., without random
inputs). The coeflicient of variation (CV) (Table I) was
larger than 1.0 for all dendritic inputs and smaller than
1.0 for somatic inputs. Even in the case of a much lower
input variance (10 percent of the value used before) to a
quasi-active model [corresponding to the ISIH of Fig.
1(c)] the CV was larger than one. In this last simulation,
the dc was 0.8 and hence it corresponds to a sponta-
neously silent cell. The low level synaptic bombardment
makes it fire with a mean interval 3.389.
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Fig. 1. Interspike interval histograms (ISIH). In this. as well as in Figs. 2
and 3, the abscissae are in arbitrary units corresponding to the normal-
ized model parameters. The arrow at the horizontal axis indicates the
mean interval. Part of the long tails have been ommitted for graphical
clarity and the number of intervals not included in the histograms are
indicated by #ini. (a) Apical/passive model, binwidth (bw) = 0.0506,
#ini = 73. (b) Apical/quasi-active model, bw = 0.0506. #ini = 101.
(c) Apical/quasi-active model with trigger zone input variance 0.0323
and dc = 0.8, bw = 0.5, #ini = 10. (d) Somatic model, bw = 0.15,
#ni = 2. (e) Distributed model, bw = 0.15, #ini = 33.

TABLE I
MEAN INTERVAL AND COEFFICIENT OF VARIATION

Apical
Pass. Quas. Act.  Somatic  Distrib.  Noiseless
Mean 1.337 1.285 1.619 1.395 1.850
interval — 3.389* — — -
Coefficient 1.282 1.435 0.507 1.103 0.000
of Variation — 1.110% — — —

*for 0.0323 trigger zone input variance and dc = 0.8.

B. Autocorrelation Histogram

The ACH for the apical/passive case [Fig. 2(a)] showed
a large peak for small lags followed by an exponential-
like decay towards the mean-rate value, indicated by a
horizontal line. Obviously, near zero lags the ACH is zero
due to the refractory period. Note that the ACH’s are cal-
ibrated in rate units (a probability estimate divided by the
bin width). The ACH for the apical/quasi-active model
[Fig. 2(b)] showed higher than average rates for lags up
to about 2.4 and smaller than average rates for lags in the
range 2.4-8.5. This is in contrast with the passive case
where a monotonic decrease was found. When the same
apical/quasi-active model was subjected to a much smaller
input variance (10 percent of the previous value) with a
trigger zone dc current equal to 0.8 the ACH [Fig. 2(c)]
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Fig. 2. Autocorrelation histograms of the spike trains (ACH) and autocor-
relation functions for the dendritic output noise. The horizontal lines
indicate the mean rate. (a) Apical/passive model, bw = 0.251. (b) Ap-
ical/quasi-active, bw = 0.517. (¢) Apical/quasi-active model with trig-
ger zone input variance 0.0323 and dc = 0.8, bw = 0.517. (d) Somatic,
bw = 0.517. (e) Somatic, bw = 0.0506. this figure shows the details of
the previous figure for small lags. (f) Distributed model. bw = 0.251.
(g) Theoretical autocorrelation tunction of the output noise from the ap-
ical/passive dendritic tree model. (h) Theoretical autocorrelation func-
tion of the output noise from the apical/quasi-active dendritic tree model.
In both (g) and (h) the ordinates are in arbitrary units. The abscissae are
in the same time scales as those used in the corresponding autocorrela-
tion histograms (a) and (b/c).

still showed the biphasic nature described above. When
the synaptic barrage was applied somatically, the ACH
resulted flat [Fig. 2(d)] except for the small lags where it
was zero and then raised to the mean rate plateau value
[Fig. 2(e)]. For the distributed model, the ACH showed
a positive peak [Fig. 2(f)] followed by a monotonic de-
crease towards the mean rate value. Fig. 2(g) and (h) show
the theoretical autocorrelation functions of the output cur-
rent from the passive and quasi-active dendritic models
(i.e., the input current to the trigger zone), respectively.
They are quite remindful of Fig. 2(a) and (b), respec-
tively. The time constants for Fig. 2(a) and (g) are prac-
tically the same, and the first two zero crossings occur at
identical lags in Fig. 2(b), (c), and (h).

C. Scatter Diagram

The scatter diagrams are shown for adjacent intervals
in the range from O to 5. The scatter plots corresponding
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Fig. 3. Scatter diagrams. For clarity purposes all the scatter diagrams show
adjacent intervals only in the range from 0 to 5. The number of points
not included is indicated by #pni. (a) Apical/passive model, #pni = 82.
(b) Apical/quasi-active model, #pni = 159. (c) Somatic model, #pni =
10. (d) Distributed model, #pni = 67.

to simulations with dendritic inputs [Fig. 3(a), (b), (d)]
indicated varying degrees of positive correlation for small
intervals, the higher correlated being the apical/quasi-ac-
tive case. In this case there was a strong predominance of
short intervals and a paucity of medium and large inter-
vals. Inputs to the soma were seen to cause no correlation
between adjacent intervals [Fig. 3(c)]. The correlation
coeflicients for the plots of Fig. 3 were 0.173, 0.403,
—0.018, and 0.135, respectively. The ACH of the shuf-
fled interspike intervals showed differences from the un-
shuffled case in the same proportion as the correlation
coefficients for Fig. 3, i.e., the largest differences were
for the apical/quasi-active and there was no difference for
the somatic synaptic inputs.

D. Instantaneous Rate and Burst Statistics

In Fig. 4 each plot shows the first 125 ‘‘instantaneous
rates”’ within each simulated spike train (instantaneous
rate defined as the inverse of an interspike interval). The
horizontal lines indicate the respective mean rates. The
profile of the figure for the apical/passive case [Fig. 4(a)]
indicates the existence of short bursts occurring at random
times and with random durations. For the apical/quasi-
active case, the tendency for bursting was more pro-
nounced [Fig. 4(b)] while for the somatic inputs there was
no indication of bursting [Fig. 4(c)]. Finally, the profile
for the distributed case showed only a slight indication of
bursting [Fig. 4(d)].

A simple definition for a burst was employed in a pro-

17 T (k)
Nowos o

1/ T ()

Fig. 4. Instantaneous rate as a function of the order. The first 125 intervals
T(k), k = 1,125 are plotted as 1 /T(k) as a function of k. The horizontal
lines indicate the mean rate. (a) Apical/passive model. (b) Apical/quasi-
active model. (¢) Somatic model. (d) Distributed model.

TABLE 11
AVERAGE BURST STATISTICS

A/P A/Q-A  Somatic  Distrib.
# bursts/train 17 34 0 7
Average # of spikes/burst 7.00 8.82 0.00 7.29
Average intra-burst interval
in % of spike train mean
interval 29.0 30.6 0.00 31.2

A/P = apical passive; A/Q-A = apical quasi-active.

gram devised to search for bursts in a spike train. A se-
quence of action potentials was defined as a burst if at
least M consecutive action potentials occurred with cor-
responding interspike intervals less than or equal to a cer-
tain value Tp,,. The results of Table II were obtained by
taking M = 6 and T, as the mean interval divided by
2.5. The number of bursts within each record of 1000 ac-
tion potentials was smaller (one half) for the apical/pas-
sive than for the apical/quasi-active case. It decreased for
the case of distributed synaptic inputs while the somatic
synaptic barrages caused no bursting at all. The number
of action potentials in a burst and the average intraburst
interspike intervals (measured in percentage of the spike
train mean interval) were practically independent of the
type of dendritic model or synaptic barrage localization,
except for the somatic inputs.

V. DiscussioN

Central neurons show, to varying degrees, a segrega-
tion of synaptic inputs on their dendritic trees. Presyn-
aptic fibers coming from different origins make contacts
at different levels of the dendritic tree, one example being
the neurons in the hippocampus [1]. The ubiquitous lay-
ered structure of cortices and the alignment of dendritic
trees are well-suited for the existence of segregated inputs
to dendritic trees. The specific region of synaptic activa-
tions as well as the types of dendritic propagation and
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trigger zone encoding are fundamental factors that define
how a neuron processes incoming information during a
certain state or behavior.

All the mean intervals shown in Table I for simulations
with random synaptic inputs are smaller than the interval
resulting by applying only the 1.2 dc input current. This
means that, for the trigger-zone model and the input in-
tensities employed, the addition of synaptic bombardment
noise results in an increase in the mean firing rate. It
should be pointed out that if a white-noise input plus a dc
current are applied to a pure integrator model with con-
stant threshold, the resulting spike-train mean interval is
equal to that without the noise input. But for the leaky
integrator (with fixed threshold) it has been shown that
the spike train mean rate increases with the input white
noise variance [29]. Our simulations showed this to be
true for much more general cases, i.e., nonwhite noise
and time-varying threshold. An example of an experimen-
tal evidence is found in [10] where white-noise length dis-
turbances cause discharge rate increases in a stretch re-
ceptor neuron. The current reaching the receptor cell’s
trigger zone has its power spectral density shaped by me-
chanical filtering. Another example is given later on.

The interspike interval coefficient of variation (CV) was
smaller than 1 only for the somatic inputs. For all den-
dritic inputs, the CV was larger than 1, independent of
location (apical or distributed), type of propagation, type
of threshold, and input dc current value (Table I). The
dependence of the CV on the input intensity was not ana-
lyzed exhaustively but it showed a clear positive corre-
lation. A simulation for the apical/quasi-active model with
a ten.times lower input power still resulted in CV > 1,
although smaller than for the higher variance case. These
high CV’s were a consequence of the long tails found in
the ISIH’s. This widespread finding of larger-than-one
CV’s for dendritic inputs seems to be a possible expla-
nation for the experimentally found larger-than-one CV’s
(e.g., [19], [21]). In [19] about 45 percent of the mes-
encephalic reticular formation cells analyzed showed CV
> 1. The CV range was between 0.09 and 3.1 (with a
mode near 0.9) and a possible explanation for this finding
is provided by our simulations: part of the cell population
might be receiving either very little synaptic input or
mainly somatic drive with very little dendritic contribu-
tions while the other part is primarily being driven by den-
dritic inputs. In [21] white-noise modulation of an adapt-
ing light applied to single goldfish ganglion cells caused
the mean CV’s to increase from 0.92 (in steady illumi-
nation) to 1.57. At the same time the mean discharge rate
increased from 38.5/s to 58.3 /s. As there is a filtering
effect in the retina [21], these results seem to be a real life
equivalent of some of the simulation results presented
here. The experimental fact that the coefficient of varia-
tion could result larger than 1 in actual neurons (a Poisson
process has CV = 1) has puzzled some neuroscientists.
Tuckwell [37] had proposed that for CV > 1 there should
be a substantial amount of inhibition to cause a long tail
in the ISIH. Wilbur and Rinzel [42] proposed that a su-

perexcitable phase for the neuron was a better candidate
to provide CV > 1. Using a model with a superexcitable
phase following a refractory phase they obtained CV’s of
the order of 1.17. To obtain larger CV’s, they used a
somewhat less realistic model where there was no refrac-
toriness but only a superexcitable phase following a spike.
While a superexcitable phase is found in some peripheral
axons (following a period of refractoriness) it is not clear
if it is a common finding in central neurons. Certainly
dendritic synaptic bombardment, as analyzed here in this
paper, is a common finding in nature and therefore a prob-
able cause for many of the experimentally described CV’s
larger than 1. Tuckwell er al. [39] obtained CV > 1 for
very high firing rates in a passive cable subjected to a
white-noise input current applied at the vicinity of the
trigger zone characterized by a constant threshold. For
farther synaptic inputs the CV’s were less than 1, perhaps
due to small input intensities.

The ISIH’s for dendritic inputs all showed quite long
tails which are explainable by the fact that low-pass fil-
tered noise tends to cause epochs of high activity and ep-
ochs of very low activity (i.e., very short and very long
interspike intervals, respectively). They were all unimo-
dal, except in Fig. 1(c) where there was a slight tendency
for bimodality, and positively skewed as are the ISIH’s
of many cells in nature. Nevertheless, there are neurons
that have quite different ISIH’s [27] and therefore, more
complicated dynamics than those covered in our simula-
tions must be involved. Webb [40], [41], using visual and
auditory cortical cells in the cat, studied the first-order
statistics when the animal was in different states: awake,
asleep (quiet and rem), and alarmed. On passing from the
asleep state to the awake state, the average finding was
that the mean rate, the CV, and the skewness decreased.
In our simulations, those same changes in mean rate, CV,
and skewness occur when the synaptic barrage is moved
from a dendritic site towards or nearer the cell body. One
class of cells in Webb’s [41] experiments also showed a
further decrease in the above mentioned parameters when
the animal was alarmed by a hissing noise. The study of
the mechanisms underlying the different states of alert-
ness or levels of arousal in the cortex should be a multi-
pronged activity, involving not only the biochemical and
endocrine but also the microanatomic and electrophysio-
logic approaches. For the latter two, theoretical and sim-
ulation results (as found in this and other papers) should
provide conceptual tools to help the experimenter in the
interpretation of his results as well as in the planning of
new experiments (physiological and/or anatomical).

No outstanding differences were found between a pas-
sive and a quasi-active dendritic tree with respect to mean
interval, CV, and ISIH of the trigger zone spike trains.
But an interesting difference appeared in the autocorrela-
tion histogram (ACH). For the apical/passive simulation
the autocorrelation was exponentially decreasing [Fig.
2(a)] while for the apical/quasi-active it showed an un-
dershoot [Fig. 2(a) and (c), respectively]. A quite inter-
esting observation was that the shapes of each ACH fol-
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lowed approximately the autocorrelation function of the
output noise from the corresponding dendritic tree (the
input current noise to the trigger zone) (Fig. 2(g), (h)].
The same applied to the distributed case but is not shown.
From these findings it may be proposed that after obtain-
ing the autocorrelation histogram of a given spike train
one may compute its Fourier transform to obtain an esti-
mate of the amplitude response of the dendritic tree equiv-
alent filter (except for a multiplying constant factor) as-
suming that the equivalent local synaptic input effects are
white. This finding relating membrane noise statistics to
spike-train statistics should be investigated experimen-
tally and mathematically (a relevant approach is seen in
[3]) so that the effects on the spike train caused by the
dendritic tree and the trigger zone dynamics should be
clearly evidenced. From the results above, if the ACH of
a neuron’s spike train changes from monotonic to bi-
phasic, or vice versa (perhaps associated with different
experimental or behavioral conditions), then the experi-
menter may hypothesize that there was a change in the
propagation mode in the dendritic tree (clearly other hy-
potheses are also possible). A passive propagation causes
a different probability of firing at the trigger zone condi-
tioned on a previous firing when compared with a quasi-
active propagation, as evidenced by the ACH (this effect
might be looked at as an ultrashort neuronal memory).
This means that two spike trains generated by these two
differently functioning dendritic trees will have different
firing patterns and, therefore, these spike trains will prob-
ably have different effects on their postsynaptic neurons.
If a central nervous system neuron shows a monotonically
decaying ACH [like in Fig. 2(a) and (f)] or a biphasic
ACH [like in Fig. 2(b) and (c)] one can say that there is
no rhythmic firing and that a reasonable hypothesis is that
the synaptic bombardment is not restricted to the soma but
has considerable dendritic sources. Many complicating
factors are possible, such as strong synaptic inhibitory in-
puts at or near the soma. Our data and the concepts behind
them are helpful in hypothesis-making but they cannot rule
out other effects. The complexities of the nervous system
seldom allow very strong inferences to be made from
available data and, therefore, any additional conceptual
results, even if not absolute, are a welcome addition to
the armamentarium currently available to the neuroscien-
tist.

In the present simulations, spike trains caused by so-
matic inputs showed a flat ACH and uncorrelated inter-
spike intervals therefore indicating a very random spike
train and suggesting that the point process is renewal. On
the other hand, for the dendritic inputs, the scatter plots
showed a positive correlation (smaller for the passive case)
for small intervals, and the shuffled spike trains showed
changes in their ACH (smaller for the passive case) thus
suggesting that the renewal hypothesis is not acceptable.
Thus, neuronal models that include simple dendritic dy-
namical descriptions seem sufficient to cause nonzero se-
rial correlation (at least for small intervals) without the
needed to postulate special trigger zone dynamics. It

should be pointed out that quite similar results were ob-
tained for fixed threshold simulations, although they were
not shown. In nature, a variety of serial correlations and
scatter plots have been found. Two examples reminding
the scatter plots presented above are seen in [30]. Gur
Fig. 3(a), (b), and (d) are similar to the scatter plot of
their unit 240-1, while our Fig. 3(c) is similar to the scat-
ter plot of their unit 259-2.

Many of the results presented above are explainable, at
least in part, by the tendency for bursting evidenced by
Fig. 4(a), (b), and (d) and corroborated by Table II. Dif-
ferent average burst rates (number of bursts/train) were
generated by the passive (17) and quasi-active (34) den-
dritic models. Nevertheless, it should be clear that the
average burst rate is only useful for differential (i.e., rel-
ative or comparative) discrimination (e.g., during changes
associated with different behavioral states). For a single
spike-train record, only the autocorrelation histogram may
tell the type of dendritic propagation. Bassant [2] gives
statistical descriptions of the spontaneous firing of pyram-
idal cells of the rabbit dorsal hippocampus. He classified
the cells in five groups according to their statistical char-
acteristics. Three of the groups showed random bursting
and it is interesting to note that his group £ (CV = 1.55,
long tailed positively skewed ISIH, peaked ACH with
monotonic decay towards mean rate, scatter plot with
positive correlation for small intervals) is well matched
by our results for the passive model (apical or distrib-
uted). On the other hand, his group A (CV = 0.65, short
positively skewed ISIH, flat ACH, scatter plot without
correlations) seems well representable by our somatic
synaptic input model. Still another set of experimental
data that show resemblances to the simulation results is
seen in [17]. They compared the spike-train statistics of
neurons in the ventrolateral nucleus of the thalamus dur-
ing sleep and wakefulness. They found that a broad-peak
ISIH and a flat ACH in the awake state turned during sleep
into a larger CV ( > 1), a sharp-peaked ISIH at small in-
tervals, and an ACH with a monotonic decrease to the
mean-rate plateau. Again, these parallels between exper-
imental findings and our simulation results are not in-
tended to point to definitive explanations but rather to
suggest a plausible hypothesis about mechanisms and to
evidence that the availability of these types of simulation
results may enhance the yield from experimental re-
search. So. instead of only recording and describing the
data, one might try to hypothesize mechanisms behind the
findings and possibly go after their experimental confir-
mation or rebuttal, thereby enriching the knowledge about
the phenomena under study.

Different situations from those described in this paper
can be simulated using a similar approach. For example,
if a different synaptic distribution is postulated for a pas-
sive dendritic tree it is sufficient to find the corresponding
power spectral density Sy(w) and then design a new dig-
ital filter that will simulate the dendritic dynamics. If pre-
synaptic random inputs are activated mainly at two dif-
ferent regions of a passive dendritic tree (i.e., at two
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different electrotonic lengths of the equivalent cable) then,
assuming linearity, two simple digital filters of the form
(5) with different cutoff frequencies will be associated in
parallel to produce the input current to the trigger zone.

As already mentioned before, the approach and the re-
sults of this paper are also relevant to the study of sensory
receptors as the receptor potential is a filtered version of
the externally-applied sensory stimulus. The filtered
membrane potential is encoded by the trigger zone pro-
ducing the afferent spike train. The filtering is due to the
peripheral apparatus of the sensory transducer and its
characteristics depend on the particular receptor. An ex-
ample remindful of the apical/quasi-active dendritic model
is given by eccentric cells in Limulus that show a gener-
ator potential power spectrum of the low-pass type with a
resonant peak [32]. The autocorrelation histogram of the
spike train was very similar to our Fig. 2(b) and (c) even
though the histogram had a different definition (it was the
autocorrelation of a continuous state-space random pro-
cess obtained from the spike train by assigning a constant
value, equal to the instantaneous rate, between the times
of discharge of two consecutive spikes). Therefore, in
sensory physiology, the autocorrelation histogram is a po-
tentially useful indicator of sensory transduction pro-
cesses.
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