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Abstract Motoneuron (MN) dendrites may be changed
from a passive to an active state by increasing the levels of
spinal cord neuromodulators, which activate persistent in-
ward currents (PICs). These exert a powerful influence on
MN behavior and modify the motor control both in normal
and pathological conditions. Motoneuronal PICs are be-
lieved to induce nonlinear phenomena such as the genesis
of extra torque and torque hysteresis in response to percu-
taneous electrical stimulation or tendon vibration in humans.
An existing large-scale neuromuscular simulator was ex-
panded to include MN models that have a capability to
change their dynamic behaviors depending on the neuro-
modulation level. The simulation results indicated that the
variability (standard deviation) of a maintained force
depended on the level of neuromodulatory activity. A force
with lower variability was obtained when the motoneuronal
network was under a strong influence of PICs, suggesting a
functional role in postural and precision tasks. In an addi-
tional set of simulations when PICs were active in the
dendrites of the MN models, the results successfully repro-
duced experimental results reported from humans. Extra
torque was evoked by the self-sustained discharge of spinal
MNs, whereas differences in recruitment and de-recruitment
levels of the MNs were the main reason behind torque and

electromyogram (EMG) hysteresis. Finally, simulations
were also used to study the influence of inhibitory inputs
on a MN pool that was under the effect of PICs. The results
showed that inhibition was of great importance in the pro-
duction of a phasic force, requiring a reduced co-contraction
of agonist and antagonist muscles. These results show the
richness of functionally relevant behaviors that can arise
from a MN pool under the action of PICs.
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Abbreviations
AD Active dendrite
AHP Afterhyperpolarization
BT Basal torque
Ca++ Calcium
CV Coefficient of variation
EMG Electromyogram
EPSP Excitatory post-synaptic potential
ET Extra torque
IPSP Inhibitory post-synaptic potential
K+ Potassium
LG Lateral Gastrocnemius
MG Medial Gastrocnemius
MN Motoneuron
MT Maximum torque
MU Motor unit
Na+ Sodium
PD Passive dendrite
PIC Persistent inward current
SOL Soleus muscle
TA Tibialis anterior
TS Triceps Surae
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1 Introduction

The activity of neuromodulatory pathways from the brainstem
in a behaving animal (Jacobs and Fornal 1997; Jacobs et al.
2002) has a powerful effect on changes in the intrinsic prop-
erties of spinal motoneurons (MNs) and may modify the
motor behavior as a whole (Heckman et al. 2005; Heckman
et al. 2009). A fundamental intrinsic change is a facilitation of
activation of voltage-gated dendritic ionic channels, mainly L-
type Ca++ channels, which generate a dendritic persistent
inward current (PIC) and plateau potentials (Hounsgaard et
al. 1988; Lee and Heckman 1998a, b; Schwindt and Crill
1980a, b). This enhances MN excitability and changes the
way synaptic inputs are integrated (Binder and Powers 1999;
Binder 2002; Heckman and Lee 1999; Hyngstrom et al. 2008;
Lee and Heckman 2000).

Several evidences have pointed out the influence of PICs in
both normal and pathological motor behaviors. For instance,
PICs have been associated with motoneuronal hyperexcitabil-
ity in chronic spinal cord injury and amyotrophic lateral
sclerosis (ElBasiouny et al. 2010; Heckman et al. 2005; Li et
al. 2004). In addition, some authors have consideredMNPICs
and plateau potentials as key mechanisms involved in the
production of large extra forces observed after percutaneous
electrical stimulations of muscles or tendon vibration (Collins
2007; Collins et al. 2001, 2002; Dean et al. 2007; Magalhaes
and Kohn 2010; Nickolls et al. 2004). However, the mecha-
nisms behind the extra forces have been a matter of debate in
the experimental literature.

A recent study by Frigon and colleagues (2011) suggested
that extra forces in response to electrical stimulation might
mainly be attributed to peripheral mechanisms (e.g., post-
tetanic potentiation and phosphorylation of regulatory myosin
light chains) and not to central mechanisms (i.e. PICs and
plateaus). However, Collins and Bergquist (2011) argued that
the assertion of peripheral mechanisms accounting for the
extra torques observed by Frigon and colleagues (2011) only
applied to muscle lengths that were shorter than those typically
used in human experiments. Additionally, a recent study
showed that a similar pattern of extra torque could be generated
by applying both electrical muscle stimulation and tendon
vibration (Magalhaes and Kohn 2010) accompanied by an
increased motoneuronal excitability after tendon vibration.
Other experimental findings have also advocated in favor of
the involvement of PICs in the genesis of extra forces, suggest-
ing that at least in part this motor behavior is plausible to have a
central origin. For instance, Klakowicz et al. (2006) and
Bergquist et al. (2011) showed an increase in H-reflex follow-
ing a high-frequency electrical stimulation either in the muscle
or in the peripheral nerve trunk.

In this study, the aim was to evaluate the effects of PICs
on force generation using a stochastic neuromuscular simu-
lator of the human leg, which is available in the internet

(Cisi and Kohn 2008). One objective was to verify if extra
forces could be generated in the simulated neuromuscular
system under conditions similar to those used in human
experiments (Collins et al. 2001, 2002; Magalhaes and
Kohn 2010). Two types of MN models were compared as
to their collective actions in a MN pool over the generation
of force: model with passive dendrite (PD) and model with
an active dendrite (AD), containing a Ca++ PIC channel.
Another objective was to study the properties of the extra-
forces generated by a muscle under the control of the pool of
MNs with AD models when compared with the forces
generated when the pool had PD MN models. Particularly,
the force variability was compared for the two types of MN
pools. Finally, the effect of inhibitory inputs on the PIC was
evaluated in a paradigm of fast force development, since
inhibition is thought to modulate the PIC activity during
normal motor behavior (Bennett et al. 1998; Hyngstrom et
al. 2007; Hyngstrom et al. 2008; Johnson and Heckman
2010; Kuo et al. 2003). Part of this work was previously
published in an abstract form (Elias and Kohn 2010).

2 Methods

The present study was performed using a neuromuscular
simulator available in the internet in a downloadable version
(the one used here) and also as an interactive system (Cisi and
Kohn 2008; http://remoto.leb.usp.br). The general structure of
the simulator was kept the same as the original, but an L-type
Ca++ channel, responsible for a PIC, was included in the
dendritic compartment of each MN model (see the mathe-
matical description below).

In this study, some elements present in the simulator, e.g.
Renshaw cells, Ia and Ib interneuron models, were not con-
sidered. We have constrained the neuromuscular model to a
straightforward architecture (Fig. 1), representing the activa-
tion of the Soleus (SOL), Medial Gastrocnemius (MG),
Lateral Gastrocnemius (LG), and Tibialis Anterior (TA)
muscles by their associatedMN pools. By convenience, math-
ematical models and their parameters were adopted the same
for all motor nuclei, but the number of elements (MUs) varied
for each muscle type (see the Appendix). Each MN pool was
driven by independently activated stochastic point processes,
which aimed to mimic either a sensory influx evoked by
tendon vibration or a volitional descending command (Fig. 1
(a)). A spike train generated by a given MN model activates,
with a time delay depending on the axonal conduction velocity
of the efferent fiber, a muscle unit that generates motor unit
(MU) twitches and motor unit action potentials (MUAPs). The
sums of twitches and MUAPs from all MUs of a given muscle
result in the muscle force (F) and the EMG, respectively
(Fig. 1(a) and (b)). A more detailed description of the system
structure can be found elsewhere (Cisi and Kohn 2008).
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2.1 Mathematical description

2.1.1 Motoneuron pool model

Within a motor nucleus, each type-specified (i.e., S-, FR-,
and FF-type) MN model was characterized by two compart-
ments representing the soma and an equivalent dendrite. The
corresponding electrical circuit is shown in Fig. 1(c) indi-
cating the modeled ionic channels. The axon was simply
associated with a conduction velocity (varying along the
pool), which causes a delay of the MN action potentials to
reach the muscle unit (the distance between the MN pool
and the muscles was equal to 0.66 m). In each compartment,
Equation (1) describes the membrane potential time course,
with x representing the evaluated compartment (i.e., soma or
dendrite) and y the adjacent compartment (i.e., dendrite
when the evaluated compartment is the soma or soma when
the evaluated compartment is the dendrite); Cx is the mem-
brane capacitance (in nF); gL,x is the leakage conductance
(in μS); gc is the coupling conductance (in μS); EL is the
leakage Nernst potential (equal to the resting potential, in
mV); Iion,x is the voltage-gated ionic current (in nA); and
Isyn,x is the synaptic current (in nA). The Appendix shows
the equations used to calculate the passive elements with
respect to the MNs’ geometric and electrotonic parameters.

�
VxðtÞ ¼ � 1

Cx
gL;x EL � VxðtÞ½ � þ gc VxðtÞ � VyðtÞ

� �þ Iion;xðtÞ þ Isyn;xðtÞ
� �

ð1Þ
The somatic compartment comprised voltage-gated Na+

and fast K+ ionic channels, responsible for the genesis of

action potentials (spikes), along with a slow voltage-gated
K+ channel, responsible for the afterhyperpolarization
(AHP). Equation (2) represents the somatic voltage-gated
ionic current (Iion,s), in which gNa , gKf , and gKs are the

maximal ionic conductances (in mS/cm²); ENa and EK are
Na+ and K+ equilibrium potentials (in mV), respectively; m
(t), n(t), and q(t) are state variables for Na+, fast K+, and
slow K+ channel activations, respectively; and h(t) is the
state variable for the Na+ channel inactivation.

Iions;SðtÞ ¼ gNam
3ðtÞhðtÞ ENa � VSðtÞ½ � þ gKf n

4ðtÞ
� EK � VSðtÞ½ � þ gKsq

2ðtÞ EK � VSðtÞ½ � ð2Þ

In contrast to the original PD MN model proposed by Cisi
and Kohn (2008), a recently developed ADMNmodel (Elias
and Kohn 2010) was included in the simulator structure. In
this model, a voltage-gated L-type Ca++ channel located in
the dendritic compartment was mathematically represented,
yielding a PIC that is described by Equation (3), with gCa the
maximal ionic conductance (in mS/cm²); ECa the Ca

++ equi-
librium potential (in mV); and p(t) the state variable for the
L-type Ca++ channel activation. A dimensionless variable γ,
ranging from 0 to 1, represents the level of neuromodulation
imposed by the descending monoaminergic pathways
(Heckman et al. 2005; Heckman et al. 2009), with 0 meaning
no PIC and 1 representing 100 % of MN PIC level. Changing
this value one can simulate the effect of different levels of
neuromodulatory drive on the spinal cord, e.g. abolishing the
PIC effects by setting γ00. The latter will result in a PD MN
model equal to that previously described in Cisi and Kohn

Fig. 1 General structure of the simulator used in this study. (a)
Expanded view of the TS muscle group and its neural, muscular and
biomechanical elements. (b) Detailed view of muscle-specific MUs.
Each MU (motoneuron and its respective muscle unit) receives a

fraction of the stochastic inputs and generates twitches and MUAPs
that summed produce the force and EMG, respectively. (c) Equivalent
circuit used to represent each MN model. Symbols are defined in the
Methods
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(2008), which is valid for anaesthetized animals. This model
was parameterized so that high values of γ (e.g., γ≥0.80)
exhibit dynamics equivalent to cat MNs subject to a high
level of neuromodulatory drive (Heckman and Lee 1999),
whereas lower values (γ≤0.60) exhibit dynamics that are
compatible with cat MNs for a medium-to-low neuromodu-
latory drive. In the present study, human MNs with a high
neuromodulatory level are associated with γ00.60, which
results in single MN firing rates compatible with those
obtained from humans.

Iion;DðtÞ ¼ g gCapðtÞ ECa � VDðtÞ½ �f g ð3Þ

The state variables (m, h, n, q, and p) were described
following the pulse-based formalism proposed by Destexhe
(1997). Briefly, the first-order differential equations, in the
form φ ¼ aφ 1� φð Þ � bφφ (with φ corresponding to a

given state variable), can be analytically solved since the
time course of forward and backward rates (αφ and βφ) were
approximated by rectangular pulses, triggered when the
membrane potential crosses a given threshold. When the
threshold is crossed, these rectangular pulses turn on and
remain active during a given time duration. While the pulse
is on, Equation (4) and Equation (5) give the time course of
activation (m, n, q, and p) and inactivation (h) variables,
respectively. In these equations, αΦ and βΦ are forward and
backward rate constants, respectively; ton is the time at pulse

activation, and φ0
a and φ

0
i are the values of φaðtÞ and φiðtÞ at

that time. The membrane threshold and pulse duration are
different for somatic and dendritic channels. In somatic
channels, the membrane threshold (Vth) is equal to the value
of spike threshold, which is given by the product between
the rheobase current and the motoneuron input resistance
(Cisi and Kohn 2008). The pulse duration for the somatic
channels is equal to 0.60 ms. The dendritic Ca++ channel
had a membrane threshold similar to the PIC threshold
(Vth-Ca) that was reported in the experimental literature for
decerebrate cats (Kiehn and Eken 1998; Lee and Heckman
1998a, 1999; Schwindt and Crill 1980a); the pulse, once
activated, remains active while the membrane potential is
higher than Vth-Ca.

φaðtÞ ¼ φ0
ae

�bΦðt�tonÞ ton < t � toff ð4Þ

φiðtÞ ¼ 1þ φ0
i � 1

� �
e�aΦ t�tonð Þ ton < t � toff ð5Þ

Before and after the pulse, Equation (6) and Equation (7)
give the time course of activation and inactivation variables,
respectively. In these equations, αΦ and βΦ are forward and
backward rate constants, respectively; toff is the time at pulse

deactivation, and φ0
a and φ

0
i are the values of φaðtÞ and φiðtÞ

at that time.

φaðtÞ ¼ 1þ φ0
a � 1

� �
e�aΦ t�toffð Þ t � ton and t > toff ð6Þ

φiðtÞ ¼ φ0
i e

�bΦðt�toff Þ t � ton and t > toff ð7Þ
Almost all voltage-gated ionic channel parameters had a

piece-wise linear variation along the MN pool (Table 1).
The somatic parameters were chosen so that behaviors of a
single PD model match experimental results from type-
specified MNs of anaesthetized cats (e.g., AHP amplitude,
AHP duration, and f-I curves). In addition, the dendritic
channel was parameterized so that behaviors of a single
AD model match experimental data from partially- and
fully-bistable MNs of decerebrate cats (Bennett et al.
1998; Heckman and Lee 1999; Lee and Heckman 1998a,
b, 1999). Figure 2 shows an example of input–output func-
tions from a single AD MN model. The resulting f-I curve
(Fig. 2(a)) of the AD MN model (γ 0 0.60) had a gain of
2.80 Hz/nA (40 % higher than the corresponding PD MN
model), which is compatible with experimental data
reported in the literature (Bennett et al. 1998; Lee and

Table 1 Parameter values adopted in the modeling of voltage-gated
ionic channels of S-, FR-, and FF-type MN models. The range of
values is provided (with a linear distribution), except for those param-
eters that were maintained constant along the pool

Parameter Unit Value

S-type FR-type FF-type

Soma gNa mS/cm2 30 30 30

gKf mS/cm2 4 4−2.25 2.25−0.50

gKs mS/cm2 16−25 25−19 19−4

ENa
a mV 120 120 120

EK
a mV −10 −10 −10

αM ms−1 22 22 22

βM ms−1 13 13 13

αH ms−1 0.50 0.50−11.25 11.25−22

βH ms−1 4 4−13 13−22

αN ms−1 1.50 1.50−11.75 11.75−22

βN ms−1 0.10 0.10−11.05 11.05−22

αQ ms−1 1.50 1.50−11.75 11.75−22

βQ ms−1 0.025−0.038 0.038−11.025 11.025−22

Dendrite gCa mS/cm2 0.038−0.029 0.029−0.016 0.016−0.012

ECa
a mV 140 140 140

αP ms−1 0.008 0.008 0.008

βP ms−1 0.014−0.016 0.016−0.019 0.019−0.020

Vth-Ca
b mV -5.20−-4.40 -4.40−-4.20 -4.20−-4.00

aWith reference to the resting potential. bWith reference to the spike
voltage threshold (Vth). Vth-Ca values were chosen randomly (CV0
0.01) around the means
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Heckman 1998b). It is worth noting the difference between
recruitment and derecruitment current values (dashed verti-
cal lines in Fig. 2(a)), which is characteristic of bistable
MNs. The hysteresis in the f-I curve is due to the difference
in the currents needed to turn-on and turn-off the PIC. The
latter is evidenced by the hyperpolarized membrane poten-
tial that turned-off the dendritic plateau potential (middle

panel of Fig. 2(b)) and, hence, derecruited the neuron. The I-
V curve (Fig. 2(c)) was estimated by voltage-clamping the
soma (bottom panel in Fig. 2(d)) and the PIC was measured
as the coupling current between soma and dendrite (i.e., the
current arriving in the soma). This input–output relation had
a classic N-shape characteristic due to PIC activation in the
dendrite (Schwindt and Crill 1980a,b; Lee and Heckman

Fig. 2 Single active dendrite (AD) MN model (γ00.60) input–output
relations. (a) Frequency-to-current (f-I) curve. The arrows indicate the
rising and falling phases of the firing rate values in response to a slow
triangular current injected into the soma. Dashed vertical lines indicate
the recruitment and derecruitment current values. (b) Bottom: Trian-
gular current injected into the soma. Middle: Somatic (black) and
dendritic (light gray) membrane potentials. The somatic spikes were
clipped at 20 mV. The dark gray curve represents the lowpass-filtered
dendritic membrane potential (2 Hz cutoff frequency), showing the

onset of a dendritic plateau after MN recruitment. Top: Instantaneous
firing rate. (c) Current-to-voltage (I-V) curve during a voltage-clamp
simulation. Only the coupling current was measured to quantify the
PIC (maximum PIC amplitude was measured after the subtraction of
the leakage current). The vertical grey bar indicates the spike threshold
(Vth) and the arrow indicates the PIC onset (Vth-Ca). (d) Bottom:
Clamped somatic membrane potential. Top: Resulting dendritic mem-
brane potential.

J Comput Neurosci (2012) 33:515–531 519



1998a) and the PIC amplitude (15.04 nA) was within the
experimental range reported in the literature (Lee and
Heckman 1998a, 1999).

Synaptic conductances were modeled by the kinetic mod-
el proposed by Destexhe and colleagues (1994). The synap-
tic current was given by the sum of all excitatory (Ne) and
inhibitory (Ni) synapses arriving onto a given compartment
(Equation 8). In this equation, ge(t) and gi(t) characterize the
excitatory and inhibitory conductances, respectively; Ee and
Ei are the reversal potentials for excitatory and inhibitory
synapses, respectively. The values of maximal conductances
were 600 nS and 500 nS for excitatory and inhibitory
synapses, respectively, and the reversal potentials were
70 mV and -16 mV (both with respect to the resting poten-
tial) for excitatory and inhibitory synapses, respectively.
These values were adopted so that individual excitatory
post-synaptic potentials (EPSPs) and inhibitory post-
synaptic potentials (IPSPs) matched experimental results
(Finkel and Redman 1983; Stuart and Redman 1990). In
order to reduce the computational load required to represent
a complex neuronal network, the algorithm proposed by
Lytton (1996) was used to account for the effects of multiple
synaptic inputs to a given MN.

Isyn;xðtÞ ¼
XNe
0

geðtÞ VxðtÞ � Ee½ � þ
XNi
0

giðtÞ VxðtÞ � Ei½ �

ð8Þ

2.1.2 Torque and electromyogram models

The MU twitch model was the discrete-time impulse re-
sponse of a second-order critically-damped system
(Fuglevand et al. 1993; Cisi and Kohn 2008), which was
described by Equation (9), with Apeak the twitch amplitude
(in N); tpeak the twitch contraction time (in ms); T the time
step (in ms); and e(n) the discrete-time spike train. The MU
twitch parameters were based on human data and had a
piece-wise linear variation along the pool (see Table 2).
Individual muscle force (F) was given by the sum of all
MU twitches and the torque due to each muscle was

calculated by multiplying F and the muscle’s moment arm
(m)–4.13 cm for SOL; 4.18 cm for MG; 4.29 cm for LG;
and 3.70 cm for TA (Menegaldo et al. 2004). Positive torque
was defined in the plantarflexion direction (torque generated
by the TS–see Fig. 1(a)), whereas negative torque was due
to the TA contraction (dorsiflexion).

FðnÞ ¼ 2e
�T
tpeak

� 	
F n� 1ð Þ � e

�2T
tpeak

� 	
F n� 2ð Þ

þ ApeakT 2

tpeak
e

1� T
tpeak

� 	
eðn� 1Þ ð9Þ

The MUAPs were described by first- and second-order
Hermite-Rodriguez functions (Cisi and Kohn 2008; Zhou
and Rymer 2004) that are described by Equations (10) and
(11), respectively, with AM the scale factor; λM the time
factor; tspike the arrival time of a spike; and u(t) the step
function. Each MU of a pool randomly received a biphasic
(Equation 10) or triphasic (Equation 11) MUAP and the
scale and time factors had a piece-wise variation along
the pool (see Table 2). A spatio-temporal filtering of
MUAPs was performed to represent the amplitude at-
tenuation and increased duration of MUs located farther
from the recording surface electrodes (Fuglevand et al.
1993; Cisi and Kohn 2008).

HR1ðtÞ ¼ AM ðt � tspikeÞe
� t�tspike

lM

� 	2

uðt � tspikeÞ ð10Þ

HR2ðtÞ ¼ AM 1� 2
t � tspike

lM


 �2
" #

e
� t�tspike

lM

� 	2

uðt � tspikeÞ

ð11Þ

2.2 Simulation protocols

All simulations were performed using a fourth-order
Runge–Kutta integration method with a 0.05 ms time step.

2.2.1 Force versus intensity curve

A linearly rising current (ramp) was slowly injected into the
MNs’ soma to gradually recruit the motor pool of SOL
muscle. The current intensity varied from 0 to 10 nA in
10 s, so that the muscle force could reach approximately
80 % of its maximum value (Fmax). Four levels of neuro-
modulatory drive (γ) were evaluated: i) high, γ00.60; ii)
medium, γ00.30; iii) low, γ00.15; and iv) absent, γ00. This
protocol was useful to assess the effect of neuromodulatory
level on the recruitment of a MN pool (Heckman et al.
2009).

Table 2 Range of values (linear interpolation between minimum and
maximum values) adopted for the parameter values of motor unit
twitches and motor unit action potentials (MUAPs)

Parameter Unit Value

S-type MU FR-type MU FF-type MU

Apeak N 0.103–0.123 0.123–0.294 0.294–0.491

tpeak ms 110.0–100.0 73.50–55.50 82.30–56.90

AM mV 0.105–0.125 0.125–0.300 0.30–0.50

λM ms 0.80–0.70 0.70–0.60 0.60–0.50
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2.2.2 Force variability

In this simulation protocol, the neuromodulation level (γ) of
the MN pool was varied from zero (passive network) to 0.60
(high neuromodulatory activity) in order to evaluate its
effect on the force variability. To evoke a maintained force
level around 20 % Fmax, the SOL MN pool was driven by
100 independent input spike trains, each following a homo-
geneous Poisson point process. The mean rate of each
process was in the range from 160 Hz to 34 Hz for γ values
varying from 0 to 0.60. Any trend in force caused by the late
recruitment of MNs was removed before data analysis.
Force variability was measured as mean (μF), standard
deviation (σF), and CV (CVF0σF/μF) of the last 5 s of the
force time course, which was previously filtered using a
lowpass fourth-order Butterworth filter with a 20 Hz cutoff
frequency.

2.2.3 Torque plateau

This protocol was performed on the TS (SOL+MG+LG)
muscle. The neuromodulatory level of the MN pool was
absent (PD MN models) or high (AD MN models with γ0
0.60) in independent simulations. Poisson point processes
(100 independent parallel inputs), representing the collec-
tive inputs to the MN pools, maintained a basal torque (BT)
of approximately 5 % of the maximum torque (MT) with a
30 % connectivity in each motor pool (i.e., each input
Poisson process activated only 30 % of the MNs of the
pool, chosen at random for each input). The intensity of
the Poisson point processes used to maintain the BT was
larger in the passive network in comparison with the active
network, since AD MN models have an increased excitabil-
ity due to the PIC, hence requiring smaller currents of
synaptic origin to achieve the same firing rate of a PD MN
model. After the first 2 s of simulation, the input point
processes were switched to nonhomogeneous Poisson pro-
cesses with mean rates modulated by 2 s duration and 15 Hz
amplitude pulses (shown at the bottom panel in Fig. 5(a)).
The BT was calculated between 1 and 2 s of simulation,
whereas the extra torque (ET) was calculated as the differ-
ence between the torques measured in the last second of
each inter-pulse interval and the BT (shadowed areas at the
top panel of Fig. 5(a)). This protocol is similar to those that
used either electrical stimulation or tendon vibration in
human and cat experiments (Collins 2007; Collins et al.
2001, 2002; Dean et al. 2007; Frigon et al. 2011;
Magalhaes and Kohn 2010; Nickolls et al. 2004).

2.2.4 Torque and EMG hysteresis

The same muscle group as well as the neuromodulatory
level (i.e. absent or high) of the preceding section (2.2.3)

was used in these simulations. A BT ~2 % MT was main-
tained by 100 Poisson point processes (similarly to 2.2.3,
the Poisson intensity was lower in the AD network than in
the PD network), and a slow 15 Hz amplitude triangular-
shaped modulation of the intensities of the stochastic point
processes was performed between 2 and 22 s (see bottom
panels on Fig. 6). Individual muscle EMG signals were full-
wave rectified and filtered using a lowpass fourth-order
Butterworth filter (6 Hz cutoff frequency). Relationships
between the plantarflexion torque versus input modulation
and the EMG envelope versus input modulation were
obtained for both passive (γ00) and active (γ00.60) net-
works. This protocol is also similar to those used in human
and cat experiments using either electrical stimulation or
tendon vibration (Collins 2007; Collins et al. 2001, 2002;
Dean et al. 2007; Frigon et al. 2011; Magalhaes and Kohn
2010; Nickolls et al. 2004).

2.2.5 Effects of inhibitory inputs on torque control

The objective of these simulation experiments was to study
the effect on the torque level of a purely inhibitory input to
the MN pool when PICs were being generated. This effect
was compared to that obtained by generating a counter-
balancing dorsiflexion torque by the activation of the TA
muscle model. First, a phasic plantarflexion torque was
generated by a 1.25 s duration excitatory input followed
by a 500 ms inhibitory input to the plantarflexor pool. At
the end of the excitatory input (concomitant to inhibition
onset), a 1 s excitatory input was imposed on the dorsiflexor
pool. Another simulation was performed with both plantar
and dorsiflexor excitation but without inhibition of the pla-
tarflexor pool. Excitatory inputs were driven by 100 inde-
pendent Poisson point processes with mean rate equal to
40 Hz, which was sufficient to generate a low torque,
mimicking a low-amplitude phasic torque. The inhibitory
input was driven by 100 independent Poisson point process-
es with the mean rate equal to 100 Hz, which was sufficient
to turn off the MN PICs. Plantarflexion and dorsiflexion
torques were calculated individually and the resultant torque
was given by the linear difference between both torques. In
addition, raw EMGs of the SOL and TA were calculated.

3 Results

The inclusion of a dendritic Ca++ PIC in each single MN
model greatly changed the dependence of the simulated
muscle force on the slowly rising injected current (Fig. 3).
Both recruitment threshold (minimal injected current that
generated force—see arrows in Fig. 3) and gain (slope of the
linear region of the curve) of the motor pool input–output
relationship were modified by the neuromodulation level,
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with a more pronounced effect on gain observed for high
levels (dash-dotted curve in Fig. 3). However, large changes
in force recruitment were noticed even for low levels of
neuromodulatory activity. For instance, there was a 70 %
reduction in the recruitment threshold of an active network
with low neuromodulation level (dotted curve in Fig. 3)
when compared with a purely passive network (solid curve
in Fig. 3). For values γ≥0.30, the recruitment threshold was
not significantly changed and major changes were in the
gain (dashed and the dash-dotted curves in Fig. 3).

The neuromodulatory activity had also a remarkable ef-
fect on force variability (Fig. 4). Force CV varied little when
passing from a passive dendrite condition to an active one
with small or medium neuromodulation levels. However, for
a higher neuromodulation level the force standard deviation
(bottom of Fig. 4) and CV were considerably reduced. For a
similar mean force (~18 % of the maximum muscle force),
the CVF for γ00.60 was approximately 3 times lower than
the value obtained for γ00, whereas the value for γ00.30
was just slightly lower (~15 %) than that of the passive
condition.

3.1 Extra torque and torque hysteresis

Figure 5(a) shows the torque evoked in the TS muscle by 2 s
duration pulse-shaped variations of the input stochastic
point process mean rates. Before the first pulse, the mean
BT was adjusted to be approximately equal in both passive
and active networks (~5 % MT). When the mean rate
(intensity) of the Poisson point processes was raised by

15 Hz both the passive and active networks showed an
increase in muscle torque, with a more pronounced effect
in the active network (continuous line). At the end of the
pulse the TS torque of the passive network (dashed line)
returned to a value similar to the BT, indicating that a
negligible ET was evoked by the neuronal circuitry.
Conversely, the active network showed a long-lasting
plateau-like torque, which is much higher than BT (Fig. 5
(b)). This ET was generated by the self-sustained discharge
of some MNs that kept discharging after the pulse (middle
panel shows the firing rate of MN #150 from the MG motor
nucleus). A second pulse was delivered to evaluate the
“warm-up” effect of the PIC (Fuglevand et al. 2006).
Again, the passive network did not show any ET, whereas
the active network had an ET very close to the first (com-
pare the ET1 and ET2 in Fig. 5(b)), indicating that no
significant “warm-up” effect was present in this simulation
(see the PIC time course of a single MN in the middle panel
of Fig. 5(a)). The values of ET obtained (~10 % MT) were
similar to the experimental results from humans reported
previously in the literature, e.g., Magalhaes and Kohn
(2010).

When the input was slowly modulated by a triangular-
shaped function the TS torque generated by the active
network showed a clear counterclockwise hysteresis
(Fig. 6(a) solid line), similar to that frequently recorded in
humans after percutaneous electrical stimulation (Collins et
al. 2002). Conversely, the TS torque generated by the

Fig. 3 Input–output functions of the SOL motor pool for different
levels of monoaminergic drive (γ). The input was a slowly increasing
current and the calculated output was the resultant muscle force nor-
malized with respect to the maximal value for that muscle (Fmax).
Arrows indicate the recruitment threshold for each curve (minimal
current sufficient to generate force). The gain was defined as the slope
of the linear region of each curve

Fig. 4 Force variability analysis. Top: Time course of force for differ-
ent levels of neuromodulatory drive. Bottom: Force standard devia-
tion (σF) as a function of the neuromodulation level. The control
value was adopted when the neuromodulation was absent (i.e., pas-
sive network)
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passive network (Fig. 6(a) dotted line) did not show any
hysteresis. Figure 6(b) shows the firing rate of three AD MN
models of the SOL motor pool. All these neurons had a
hysteresis in its discharge rate as a function of time, similar
to that observed in f-I curves of single AD MNs (e.g.,
Fig. 2).

The information provided in Fig. 7 is unique to the
simulations due to the challenge of recording the activity
of hundreds to thousands of neurons from the human spinal
cord. However, in the simulator these data are readily avail-
able and may serve for studies focused on how the muscle
force was influenced by the MNs’ discharges. The same
input variation evoked a large force in the active network
in comparison with the passive, as was previously assessed
by the motor pool input–output curves (Fig. 3). This large

force can be explained by two factors: i) a large number of
MNs were recruited in the active network (compare Fig. 7(a)
and (b)) due to their increased sensitivity to excitatory
inputs, i.e., less excitatory synaptic current was sufficient
to recruit more AD MNs; ii) due to their increased excit-
ability the mean firing rate of AD MNs was somewhat
higher than that of PD MNs (examples in Fig. 7(c) and (d)).

Figure 7(a) evidenced that the force (or torque) hysteresis
associated with the active network was due to differences in
recruitment and de-recruitment of MNs. For instance, the
last recruited MN in the active network (MN #620) was
recruited near the peak of the triangle, but once recruited it
continued to discharge even with an excitatory current lower
than that required for its recruitment. As an additional
example, MN #246 in the active network was recruited

Fig. 5 Torque plateau and
measured extra torque (ET). (a)
Bottom: variation in mean rate
of Poisson point processes. The
basal value (subtracted for
better visualization) in both
passive and active networks
was adjusted (95.20 Hz in the
passive and 18.20 Hz in the
active network) in order to
generate a basal torque (BT) of
~5 % MT. Middle: PIC time
course (negative value means
inward current) and
instantaneous firing rate (black
curve represents the moving
average) of MN #150 of the
MG muscle pool. Top:
plantarflexion torques
(normalized by the maximum
torque, MT) calculated for the
passive (dotted curve) and
active (continuous curve)
dendrite motoneuronal
networks. Shadowed areas
indicate the evoked basal torque
(BT) and the measured ETs
(ET1 and ET2). (b) Measured
ETs after the first (ET1) and
second (ET2) pulses
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and de-recruited with different levels of synaptic input (Fig. 7
(c)), whereas in the passive network (Fig. 7(d)) the recruitment
and de-recruitment of the same MN was at an approximately

equal input level. These are typical features of self-sustained
discharges evoked by PICs found in animal experiments
(Bennett et al. 1998; Hounsgaard et al. 1988; Lee and
Heckman 1996, 1998b).

We have also simulated the EMG of the TS muscle during
the slow triangular modulation of the motor pool input. The
results (Fig. 8) showed a similar pattern of hysteresis in the
EMG envelope of the active network as was also found for the
muscle torque. On the other hand, the neuromuscular system
driven by the PD MN network did not present any marked
hysteresis in the EMG (consistent with the torque findings). In
both conditions (active and passive), the intensity (e.g., pow-
er) of the EMG was higher for the SOL muscle in comparison
with the gastrocnemii due to its relative importance in the TS.
Similar data (unpublished) were experimentally recorded in
our lab during triangular modulation of tendon (calcaneous)
vibration in humans.

3.2 Effect of inhibitory inputs

This simulation emphasizes the importance of inhibitory
inputs in a neuronal network functioning under the effect
of PICs. In Fig. 9(a) TS excitation led to the generation of a
torque (light gray curve) that remained relatively high even
when the TS activation was turned off, due to the self-
sustained discharge of MNs. An activation of the TA muscle
(Fig. 9(a), dark gray curve) helped decrease the torque but
this occurred quite slowly (Fig. 9(a), black curve) and with a
high degree of co-contraction, limiting the execution of a
phasic force. The TS and TA EMGs are seen below, indi-
cating that the last interval was characterized by a co-
contraction. On the other hand, in Fig. 9(b) the simultaneous
activation of the TA muscle with inhibitory presynaptic
spike trains to the TS MN pools led to a fast decay of the
resultant torque (Fig. 9(b), black curve), since the self-
sustained discharges of MNs in the TS motor pool were
turned off by the inhibition. The respective EMGs are
shown below and indicate that the TS activity was turned
off when the TA muscle was activated.

4 Discussion

A stochastic and nonlinear neuromuscular simulator with
parameters estimated from the biophysical literature was
used to investigate the role of dendritic PICs on torque
generation. The first result, shown in Fig. 3, exemplified
the powerful effect exerted by PICs on the relation between
muscle force and input current. Different motor outputs
might be achieved by adjusting the level γ of neuromodu-
latory activity, adopted as equal for all MN types in a
specific pool. A qualitatively analogous result was obtained
by Heckman (1994) but with a very simplified MN pool

Fig. 6 (a) Relationship between plantarflexion torque and MN pool
input modulation level (variations in input mean rate). When the input
(Poisson point processes) mean rate was modulated by a slow triangu-
lar waveform with a 15 Hz peak value (arrows correspond to the rising
and falling phases), the active network (solid curve, γ 0 0.60) gener-
ated a marked hysteresis in torque, whereas no evident hysteresis was
observed in the torque generated by the passive network (dotted curve).
The input modulation had the same amplitude for both passive and
active networks, but the basal value in each condition was adjusted
(88.50 Hz in the passive and 16.70 Hz in the active network) so that the
initial force had the same value in both situations. (b) Firing rate
(moving average) for three MNs of the active network. The light
arrows indicate the rising and falling phases of MN firing rate
corresponding to the slow modulating triangular waveform. Vertical
arrows indicate the recruitment of each MN
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model of the feline MG muscle. The linear range of the
input–output curve is related to the rate modulation of each
recruited MN and reflects the cell’s frequency-to-current
transduction (f-I curve). In cat MNs, the activation of PICs
induces changes in both recruitment threshold and f-I gain
(Bennett et al. 1998; Hounsgaard et al. 1988; Lee and
Heckman 1996, 1998b). In our type-specified MN models,
similar changes in f-I curves were observed (Fig. 2) and the
motor output reported in Fig. 3 is an emergent behavior of
the non-homogeneous neuronal network. The sigmoidal
shape of these curves is due to saturation of individual
MU forces that occurs at high intensity inputs. Technical
challenges preclude the estimation of such a relation in both
humans and animals (Heckman et al. 2009), which means
that computational neuroscience techniques (as developed
and used here) are the only tools capable of providing clues
as to the relevant physiological parameters. Improvements
in our models could be done, for example, by smoothing the
sharp transitions in the rheobase curve between different
MN types and/or decreasing the rheobase slopes for the F-
type MNs. However, these refinements will probably have
little impact on the predictions obtained from the results.

A noteworthy result of this study was the influence of the
PIC on the force variability (Fig. 4). There was a remarkable

reduction in the σF for high neuromodulation levels when
compared with lower levels. For low neuromodulation lev-
els the force variability was quite similar to that of the
passive network. This similarity may be due to the low
number of bistable MNs for these conditions, regardless of
the PIC activation along the pool. The PIC magnitude was
lower (or absent) for γ<0.40 and did not induce a profound
change in MN model dynamic behavior, so that the inter-
spike interval (ISI) variability, which in this study was
reflected in the force variability, was also similar for these
conditions. When a higher neuromodulatory activity was
imposed on any given MU, the corresponding ISI variability
and MU force variability were significantly decreased (un-
published data) because a smaller level of synaptic current
was sufficient to recruit the MU, so that less synaptic vari-
ability was imposed onto the MN membrane. Decreased ISI
variability was also shown in previous modeling studies
when AD and PD MN models were compared (Taylor and
Enoka 2004; Williams and Baker 2009). Actually, this result
serves as a prediction, since, to the best of our knowledge,
no experimental findings have been reported on this issue.
From a functional perspective, this finding suggests that if
the spinal cord were under the effect of a relatively large
neuromodulatory activity, a steadier (less variable) force

Fig. 7 The role of MN-pool self-sustained discharges on torque hys-
teresis. Left and right columns present the results for the AD (γ 0 0.60)
and PD MN networks (γ 0 0), respectively. (a) and (b): Raster plots of

recruited MNs and the force generated by the SOL muscle (continuous
line). (c) and (d): Firing rates (moving-average) of two representative
MNs. (e) and (f): Input modulation signal
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would be developed, reinforcing the hypothesis that PICs
may be useful during postural tasks (Gorassini et al. 1998;
Heckman et al. 2009) and precision movements.

4.1 Effects of PICs on extra torque and torque hysteresis

Several studies on humans have discussed the importance of
PICs on the genesis of torque plateau after percutaneous
electrical stimulation or tendon vibration (Bergquist et al.

2011; Collins et al. 2001, 2002; Klakowicz et al. 2006;
Magalhaes and Kohn 2010; Nickolls et al. 2004). These
studies showed patterns of torque (force) that were repro-
duced by the simulator (Figs. 5 and 6), both with pulse and
triangular modulation of the input. This suggests that the
geneses of ET and torque hysteresis are entirely compatible
with mechanisms of central origin, particularly the activa-
tion of motoneuronal PICs yielding plateau potentials.
Increased F-wave amplitudes measured before and after

Fig. 8 Effect of PICs on EMG. (a) Active network (γ 0 0.60) and (b)
passive network (γ 0 0). Top panel: relationship between EMG enve-
lope and the input modulation. Arrows indicate the rising and falling
regions of the triangular input (the same as in Figs. 6 and 7). Bottom

panel: raw EMG (black curves) of plantarflexors and the corresponding
envelope (light gray curves, which were multiplied by 3 for better
visualization)
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tendon vibration were described in the literature (Magalhaes
and Kohn 2010), suggesting that the motor pool excitability
was augmented by vibration. A similar finding was reported
by Klakowicz et al. (2006) and Bergquist et al. (2011)
comparing H-reflex amplitudes before and after high-
frequency electrical stimulation. Nevertheless, all these ex-
perimental studies did not exclude the role of other central
mechanisms, such as synaptic post-tetanic potentiation
(Lloyd 1949), and peripheral mechanisms, such as muscular

thixotropy, muscle post-tetanic potentiation, and phosphor-
ylation of regulatory myosin light chains. A recent experi-
mental work (Frigon et al. 2011) examined the involvement
of PICs on the genesis of ET and stated that the previous
results of Collins and co-workers (Collins et al. 2001, 2002;
Klakowicz et al. 2006; Nickolls et al. 2004) using percuta-
neous electrical stimulation were merely due to intrinsic
muscle properties. However, their results using tendon vibra-
tion, as also used in previous studies on cats (Hounsgaard et al.

Fig. 9 Effect of an inhibitory input on resultant torque generation by
both TS and TA muscle groups. TS MN pool without (a) and with (b)
inhibition. Top: plantarflexion (light gray), dorsiflexion (dark gray),
and the resulting torque (plantarflexion + dorsiflexion, black). Hori-
zontal bars indicate the excitation of TS and TA, as well as the

inhibitory input delivered to the TS motoneuron pool (at right graph,
grey horizontal bar). Bottom: Raw EMGs of SOL and TA muscles.
Note the marked co-contraction of SOL and TA muscles in (a) but
without achieving a fast force resetting to the resting value (black line
in the upper panel)
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1988), evoked plateau potentials in cat MNs and extra force
(their Fig. 6). In response to this study, Collins and Bergquist
(2011) argued that different experimental setups were used
between the prior and recent studies, mainly concerning the
joint angle (or muscle length) used by Frigon et al. (2011).
Therefore, both central and peripheral mechanisms likely are
involved in the genesis of extra force and force hysteresis in
humans. In the present modeling and simulation study, PICs
were shown to change properties of the spinal motoneuronal
network generating conspicuous nonlinear motor behaviors,
which are functionally important and have an impact in reha-
bilitation procedures (Bergquist et al. 2011; Dean et al. 2007;
Magalhaes and Kohn 2010).

The inclusion of a dendritic Ca++ PIC profoundly
changed the discharge properties of MNs in the spinal
circuitry represented in the simulator. The ET (torque pla-
teau) observed was due to the model’s self-sustained dis-
charge that lasted several seconds after an excitatory input.
Silent MNs were recruited by an increased excitatory input
(pulse modulation in Fig. 5) and continued to discharge
even after the removal of the excitatory synaptic current.
This “unexpected” discharge evoked by the PIC activation
accounted for the observed phenomenon, and when PICs
were removed from the neuronal network (passive network),
the plateau did not occur. Additionally, the results of Fig. 7
(c) and (d) are remindful of the self-sustained discharges
reported by Gorassini et al. (1998) in experiments with
paired MUs in humans, suggesting that the latter results
are also compatible with MN PICs.

When the synaptic input is frequency-modulated by a
slowly varying triangle, the hysteresis observed in the
torque (Fig. 6(a)) was due to differences in recruitment
and de-recruitment of the MNs, as can be seen in Fig. 6(b)
and Fig. 7. Biophysically, this difference is due to the
activation of PICs, which cause a hysteresis in the f-I curve
of individual AD MNs (Figs. 2 and 6(b)). Therefore, the
value of the current required to recruit a given MN is larger
than that required to turn off its discharge (Bennett et al.
1998; Lee and Heckman 1996, 1998b). It is important to
emphasize that the motor behavior observed in the simula-
tions is an emergent property of the network of model
neurons acting under the influence of PICs.

Another experimental clue to the involvement of central
mechanisms (e.g., PICs in the MNs) in the generation of
force hysteresis is the existence of a similar hysteresis in the
surface EMG, as suggested by the results of Fig. 8. This
finding may suggest that recording also the EMG might be
useful to distinguish between the contributions of central
and peripheral mechanisms to the torque plateau and hys-
teresis. However, experimentally it will not be possible to
assure that a central mechanism is exclusively due to PIC
activation.

4.2 Effects of inhibition on torque generation

Experimental results on cats showed that the inhibition is
functionally relevant in turning off the self-sustained dis-
charge evoked by a brief excitatory input (Hounsgaard et al.
1988). In addition, several studies have reported that PIC
magnitude and its effects on MN firing can be modulated by
inhibitory synaptic inputs, for example, from the Ia reciprocal
inhibition of antagonist muscles, resulting in a local control
mechanism (Bennett et al. 1998; Hyngstrom et al. 2007;
Hyngstrom et al. 2008; Johnson and Heckman 2010; Kuo et
al. 2003). Here we have presented an example of the func-
tional role of inhibition when a phasic force development is
desired (Fig. 9(b)). The first assumption was that the spinal
cord was under the influence of monoamines so that MN
dendritic voltage-gated ionic channels (e.g., L-type Ca++

channels) are active. Under this condition, a brief excitatory
synaptic input was sufficient to activate the PICs. This made
the MNs keep discharging for a prolonged period and evoking
a plateau in the torque (Figs. 5 and 9(a)). Without inhibition a
high force TA contraction would have to be generated to
counterbalance the maintained torque of the agonist muscle.
The fast return of the torque caused by the descending inhib-
itory activity (Fig. 9(b)) emphasizes the importance of inhib-
itory inputs in networks whoseMNs exhibit PICs, since in this
situation, the PIC may be a limiting factor to the desired motor
behavior and inhibition would be crucial to counterbalance its
effects (Heckman et al. 2009; Johnson and Heckman 2010).

5 Conclusion

The first contribution of this work was the expansion of a
public-domain large-scale neuromuscular simulator to in-
clude MN models that change their dynamic behavior in
response to neuromodulatory activity. The simulator pro-
duced several results, for example, the torque plateau (or
ET) and torque hysteresis for the TS muscle, hence support-
ing the hypothesis that motoneuronal PICs are responsible
for these motor behaviors. Other functional contributions of
dendritic PICs were also deduced from the model sim-
ulation results, such as the modulation of muscle force
and the reduction in force variability, all depending
upon the level of neuromodulation. Finally, the results
suggested that inhibition has a fundamental importance
in controlling phasic force generation when spinal cord
neuromodulators are present. All these findings have
implications on the understanding of human motor con-
trol and, to our knowledge this was the first theoretical-
computational study that discussed such aspects. Some
results are predictions that have to be tested by the
experimental community, which is one of the roles of
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computational neuroscience, i.e., raising new questions
for the experimental neuroscientists.
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Appendix: Geometric and electrotonic properties
of the motoneuron pool

The passive characteristics of each single MN model (see
section 2.1.1) depended on the geometric and electrotonic
properties of the cell (Equations A1 to A5), which were
based on data from type-specified (i.e., S-, FR-, and FF-
type) cat MNs (Fleshman et al. 1988; Zengel et al.
1985). In this study, the parameters varied linearly with-
in each type of MNs (see Table 3), resulting in a piece-
wise linear approximation of how these parameters vary
along the whole pool. Figure 10 shows an example for
the range of rheobase currents adopted in the SOL MN
pool. All the parameters were made equal for the dif-
ferent motor nuclei (i.e., SOL, MG, LG, and TA) and
the differences between them were only in the numbers
of each MU type (Table 4).

gc ¼ 2
Ri:lD
p:r2D

þ Ri:lS
p:r2S

ðA1Þ

glD ¼ 2:p:rD:lD
Rm;D

ðA2Þ

glS ¼ 2:p:rS :lS
Rm;S

ðA3Þ

CD ¼ 2:p:rD:lD:Cm ðA4Þ

CS ¼ 2:p:rS :lS :Cm ðA5Þ

Fig. 10 Range of rheobase currents for the SOL MN pool. Within
each MN type (the range is bounded by dots) the values varied linearly,
resulting in a piece-wise linear variation along the pool

Table 3 Range of values adopted for the geometric and electrotonic
parameters of MN models

Parameter Unit Value

S-type MU FR-type MU FF-type MU

Rheobasea nA 3.50–6.50 6.50–17.50 17.50–25.10

Soma radius (rS) μm 38.75–41.25 41.25–43.75 43.75–56.50

Soma length (lS) μm 77.50–82.50 82.50–87.50 87.50–113

Soma specific
resistance (Rm,S)

kΩ.cm² 1.15–1.05 1.05–0.95 0.95–0.65

Dendrite radius (rD) μm 20.75–31.25 31.25–41.75 41.75–46.25

Dendrite length (lD) mm 5.50–6.80 6.80–8.10 8.10–10.60

Dendrite specific
resistance (Rm,D)

kΩ.cm² 14.40–10.70 10.70–6.95 6.95–6.05

Cytoplasm resistivity
(Ri)

Ω.cm 70 70 70

Membrane specific
capacitance (Cm)

μF/cm² 1 1 1

Axon conduction
velocityb

m/s 44–47 47–50 50–53

a Rheobase values had a small variability (1 % of CV). b The distance
between the MN pool and the muscles was equal to 0.66 m

Table 4 MU number
adopted in each motor
nucleus of the neuro-
muscular system

Type Plantarflexors Dorsiflexor

SOL MG LG TA

S 800 250 200 250

FR 50 125 100 50

FF 50 125 100 50
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