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Abstract

Mathematical models of motoneurons (MNs) of types S, FR and FF were developed based on cat MN data. Each of the three models has
an initial segment, a soma and a dendritic tree. The initial segment and the soma include models of several types of ionic currents, including
a calcium-dependent slow potassium current. The dendritic tree is modeled as a series association of several electrically passive cylinders.
Afterhyperpolarization parameters, current to frequency relation and the responses to input current steps, ramps and sinusoids were used
for model validation. The effects of sinusoidally varying synaptic inputs at different levels of the dendritic tree were studied by computer
simulation. The corresponding frequency response functions resulted of lowpass type with cutoff frequencies from 10 to 40 Hz, for synapses
occurring more distally or more proximally, respectively. The nonlinear effects caused by two sinusoidally varying synaptic conductances (at
7 and 11 Hz), acting at different dendritic segments, were quantified by spectral analysis of the current reaching the soma. The simulations
pointed to two main nonlinear effects: (i) harmonics of the two input frequencies (e.g., 14 Hz) and (ii) intermodulation terms (e.g., 4 Hz). When
the two synaptic inputs occurred on more distal dendritic compartments the nonlinear effects were more pronounced.
� 2006 Published by Elsevier Ltd.
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1. Introduction

The motoneurons (MNs) are the elements of the central ner-
vous system (CNS) that provide the link between the com-
mands generated by the nervous system and the muscle fibers.
The link they provide is not a mere relay, but a rather sophis-
ticated signal processor. The static and dynamic behaviors of
MNs are relevant in defining the “language” employed by the
CNS to control the muscles. Due to the complexity of MNs
and the neuronal networks in which they are embedded, many
questions about their roles and the ways they are controlled by
the CNS require a more theoretical approach, either by analyti-
cal methods or by computer simulations of mathematical mod-
els. The latter are warranted when medium to high-complexity
MN models are the center of the study, which is the case in the
present paper.
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Vertebrate MN models started being developed at least 40
years ago [1], for different purposes. Biophysically realistic,
rather complex, MN models have been developed to mimic
many of the experimentally found motoneuronal characteristics
[2–8]. These models were developed for the study of a wide
range of phenomena at the neuronal level. Other less complex
models were also developed with the objective of answering
simpler or more focused questions [9–14]. Finally, MN mod-
els have also been developed when the behavior of an MN
pool and the muscle it innervates was the focus of the study
[15–19].

The objective of the present work was to develop mathemat-
ical models of mammalian MNs to be used in (a) studies of
the behavior of single MNs subjected to different physiologi-
cal conditions, (b) studies of MN pools subjected to a variety
of descending and afferent synaptic commands. A particular
application of the latter case is in the interpretation of experi-
mental results obtained from humans to elucidate the function-
ing of the spinal cord neuronal circuitry [17,19,20]. Due to the
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large numbers of neurons involved, the MN models to be used
in such studies have to combine biological reality with compu-
tational efficiency.

Motor units in humans and higher animals are usually
composed of a mixture of three main types, S, FR and FF
[21]. This division in three types is often employed in the
literature and refers mainly to the properties of the muscle
fibers innervated by each MN. The MNs have characteris-
tics that are related to the motor unit type, even though it is
known that there may be some overlap in the values of many
parameters [21–24]. One important characteristic is the af-
terhyperpolarization (AHP) that follows the discharge of an
action potential. The AHP in MNs is quite pronounced and
has a long duration, contributing to the relative refractory
period and to a limitation of the maximum firing rate [25].
Many of the dynamic properties of MNs depend strongly on
mechanisms behind the generation of the AHP. Another im-
portant quantifier of MN behavior is the f/I relation. When
a constant current is injected in an MN, its steady-state firing
rate f increases with an increase in the current intensity I .
Different MN types exhibit a different f/I relation. The fea-
tures of the mapping from the injected current I to the firing
rate f are important from a functional standpoint because an
increase in the MN firing rate will cause an increase in the
force generated by the muscle fibers innervated by that MN
[26]. The modeling effort in this work was oriented towards
the development of three different MN models, each one be-
ing a sort of representative of each of the three main types
of MNs.

This contribution builds on the model developments of pre-
vious scientists. Several MN models have evolved during the
lifespan of neuroscience, their creation being guided by dif-
ferent assumptions and objectives. We chose one evolutionary
branch that leads to biologically realistic mathematical mod-
els but with a complexity level that could allow their use in a
computer simulator of an MN pool.

For the validation of our mathematical models of MNs
we chose a battery of tests that covered both static and dy-
namic conditions. The latter aspect is of special relevance
because most published MN models have been validated with
a quite restricted set of tests, mostly for constant current
inputs.

2. Methods

The following topics will be covered in this section: (i) de-
velopment of S, FR and FF models; (ii) battery of tests for MN
model validation.

The three mathematical models were encoded in C++ lan-
guage and run in a Windows environment. This assured a fast
simulation time as compared with available general purpose
neuronal simulators such as Genesis, Nodus or Neuron. Never-
theless, the greatest advantage of such an implementation is that
the resulting code can be embedded in any MN pool simulator
written in C++. The parameter values for the three models are
available at www/leb.usp.br/MNs.

Fig. 1. General schematic of each motoneuron model. The electrical equiv-
alent circuits for the soma, the initial segment and the first two dendritic
compartments are shown. The soma and the initial segment are each mod-
eled by parallel associations of a capacitance and several voltage-dependent
conductances (only few are shown), each in series with a battery.

2.1. Development of the S, FR and FF models

The S and FR MN models departed from the respective mod-
els developed in [3]. Our models ended up containing some dif-
ferent ionic currents. To complete the set, a model for type FF
MNs was also developed. The battery of tests, to be presented
below, was applied to several of the existing MN models and
the results gave several clues as to the types of required im-
provements, either pointing to the need for other types of ionic
channels or for different parameter values.

2.1.1. General MN model structure
The general structure of each of the developed models is

shown in Fig. 1, where the electrical equivalent of the initial
segment, the soma and the first two dendritic compartments is
indicated. Each dendritic compartment (di) is represented as a
cylinder, the soma (S) is represented as an equivalent sphere
and the initial segment (IS) is represented as a cylinder. The
geometric and basic electrical parameters for each of the three
models are given in the Appendix. The differential equations
relating the membrane potentials of neighboring dendritic com-
partments arise naturally from the electrical circuit of the equiv-
alent dendritic cable (Fig. 1).

2.1.2. General model for the somas
To mimic real MNs [27], the mathematical model of the

soma represents several ionic currents, indicated by Iions in
the equation below, that are associated with different voltage-
dependent ionic conductances. In addition, the soma receives a
current from the first dendritic segment (d0) and another cur-
rent from the initial segment, which depend on the coupling
conductances gS,d0 and gS,IS. Therefore, the general differ-
ential equation relating the soma membrane potential to the
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Table 1
Geometric and electrical data of the soma of the proposed models

Type S Type FR Type FF

Geometric data
Diameter of the soma (�m) 50.9 48.8 49.2
Area of the soma (�m2) 7569.86 6146.34 6564.01

Electrical data
Specific membrane capacitance (�F/cm2) 1.0 1.0 1.0
Specific membrane resistivity at soma (� cm2) 700 225 70
Specific cytoplasmic resistivity (� cm) 70 70 70
Membrane conductance (mS) 1.08 × 10−4 2.73 × 10−4 8.49 × 10−4

Membrane capacitance (�F) 7.57 × 10−5 6.15 × 10−5 6.56 × 10−5

above-mentioned currents is

CS

dVS

dt
= Iions + gS,d0(Vd0 − VS) + gS,IS(VIS − VS)

+ gL,S(EL,S − VS),

where VS is the soma membrane potential, CS is the soma mem-
brane capacitance, gS,d0 is the coupling conductance between
the soma and dendritic compartment d0, Vd0 is the membrane
potential at the dendritic compartment d0, gS,IS is the coupling
conductance between the initial segment and the soma, VIS is
the membrane potential of the initial segment, gL,S is the leak-
age conductance and EL,S is the resting membrane potential.
The ionic currents Iions in the soma are composed of fast sodium
and potassium currents INa(soma) and IKf(soma), slow potassium
currents IBKs(soma) and ISKs(soma) and calcium currents of types
N and L. Their equations are given in detail in the Appendix.
A similar equation describes the initial segment, except that it
does not have the current input from dendritic compartment d0
and it has fewer types of ionic channels, as will be shown later.

The soma of each MN model (of types S, FR and FF) was
modeled as a sphere, with diameter 50.9 �m for type S MN
model, 48.8 �m for type FR and 49.2 �m for type FF. The
specific membrane resistivity was 700, 225 and 70 � cm2 in the
soma for the S, FR and FF MN, respectively. For all models,
the specific membrane capacitance was 1.0 �F/cm2 and the
specific cytoplasmic resistivity was 70 � cm. The respective
membrane leakage conductances were 1.08×10−4, 2.73×10−4

and 8.49 × 10−4 mS while the membrane capacitances were
7.57 × 10−5, 6.15 × 10−5and 6.56 × 10−5 �F (Table 1).

The geometric and electrical data of the soma are summa-
rized in Table 1.

2.1.3. Models for the dendritic trees
The geometries of the equivalent dendritic trees for the S

and FR models were similar to those employed in [3], with
experimental data taken from [28,29]. Their experimental data
from cat triceps surae MNs provided the basis for the devel-
opment of the equivalent cables, more specifically, MNs 35/4
and 43/5 served as templates for the S and FR MN models.
The first compartment of the S (FR) MN equivalent dendrite
had a 25 �m (40 �m) diameter and a 500 �m (500 �m) length.
The final compartment had a 0.63 �m (1.0 �m) diameter and

a 125 �m (100 �m) length. There were 17 (19) compartments
with a total length of 7000 �m(6675 �m) in the S (FR) MN
model equivalent dendritic cable, both ending with a sealed end,
with an electrotonic length of 2.29� (2.448�). The passive den-
dritic parameters were taken from [29] using the step model:
specific membrane resistivity 20 000 � cm2 (11 000 � cm2) in
the dendrites. For both models, the specific membrane capac-
itance was 1.0 �F/cm2 and the specific cytoplasmic resistiv-
ity was 70 � cm. The conductance and capacitance values of
the dendritic models for S and FR MNs may be found in the
Appendix.

To construct the type FF MN dendritic model we used ex-
perimental results from neuron 41/2 described in [28,29]. The
equivalent tapering cable resulted with a total length of 6650 �m
with an electrotonic length of 1.96�. This length was repre-
sented by 19 compartments in a row, the first with 35 �m in
diameter and 500 �m in length, and the last with 0.5 �m in di-
ameter and 100 �m in length. The passive dendritic parameters
were taken from [29] using the step model: specific membrane
resistivity 20 000 � cm2 in the dendrites. The specific mem-
brane capacitance was 1.0 �F/cm2 and the specific cytoplasmic
resistivity was 70 � cm. The dendritic compartment parameters
of the FF MN model may be found in the Appendix.

The geometric and electrical data of the dendrites are sum-
marized in Table 2.

2.1.4. Models for the initial segments
As in [3], the initial segment was modeled as a single com-

partment equivalent to a cylinder of diameter 10 �m and length
100 �m for the three MN models, its leakage conductance in
parallel with the axonal equivalent input resistance represented
by conductance gIS. As the specific membrane resistivity was
different for the S, FR and FF models (see above), the equiva-
lent membrane conductance was different in each: 4.6 × 10−5,
1.43×10−4 and 4.16×10−4 mS, respectively. However, as the
areas of the initial segments were equal in the three models, the
equivalent membrane capacitances were 3.22 × 10−5 �F in all
three (Table 3). The voltage-dependent channels were modeled
as done in [2,4]. These consisted of the classic Na and K fast
channels, similar for the three models, with parameter values
that made the firing threshold in the initial segment lower than
in the soma (the expressions are given in the Appendix).
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Table 2
Geometric and electrical data of the dendrites of the proposed models

Type S Type FR Type FF

Geometric data
Number of compartments 17 19 19
First compartment diameter (�m) 25 40 35
First compartment length (�m) 500 500 500
Final compartment diameter (�m) 0.63 1.0 0.5
Final compartment length (�m) 125 100 100

Electrical data
Specific membrane resistivity at dendrites (� cm2) 20 000 11 000 20 000
Specific membrane capacitance (�F/cm2) 1.0 1.0 1.0
Specific cytoplasmic resistivity (� cm) 70 70 70
Total length of the equivalent dendrite (�m) 7000 6675 6650
Electrotonic length 2.29� 2.448� 1.96�

Table 3
Geometric and electrical data of the initial segment of the proposed models

Type S Type FR Type FF

Geometric data
Length of the initial segment (�m) 100 100 100
Diameter of the initial segment (�m) 10 10 10
Area of the initial segment (�m2) 3220.13 3220.13 3220.13

Electrical data
Specific membrane capacitance (�F/cm2) 1.0 1.0 1.0
Specific membrane resistivity at initial segment (� cm2) 700 225 70
Specific cytoplasmic resistivity (� cm) 70 70 70
Membrane conductance (mS) 4.6 × 10−5 1.43 × 10−4 4.16 × 10−4

Membrane capacitance (�F) 3.22 × 10−5 3.22 × 10−5 3.22 × 10−5

The geometric and electrical data of the initial segment are
summarized in Table 3.

2.1.5. Details of the models for the somas
For the S and FR models we started out from the models

in [3] and hence our initial task was to replicate their results.
We were successful with the S-type MN model, but could not
replicate the simulation results of their FR model. After exhaus-
tive trials, we discovered that we could replicate their results
for the FR model if we used the specific membrane resistivity
values of the S-type MN for the soma and initial segment of
the FR model. However, when we used the correct resistivity
values for the FR MN and the values given in their paper of
the ionic channel dynamics, our simulation results did not fit
their results and neither the values reported in the experimental
literature on MNs. The fast Na+ and K+ channels were mod-
eled as done in [3], which are slight modifications of Traub’s
models [4,5]. As the FR model in [2] did not fit adequately ba-
sic MN data (due to the problem we mentioned before) and as
both their S and FR models could not replicate experimental
data on the dynamic properties of MNs (e.g., pattern of spik-
ing for ramp and sinusoidal injected currents), we thought that
a more biophysically realistic representation of the slow K+
current could yield substantial improvements. Therefore, their
slow K+ current was replaced by two slow K+ currents that
depended explicitly on intracellular Ca2+ concentration, the

first being a type SK current and the second a BK current [30].
Two types of Ca2+ current, types N and L, contributed to the
variations in intracellular Ca2+ concentration. All these differ-
ent ionic currents will be described explicitly in separate sub-
sections because they are a major departure from previous work
on MNs and many of the improvements achieved by the new
models are due to the introduction of such currents. Jones and
Bawa [2] did not model FF MNs, but Traub [4] did, so we ran
his FF-type MN model through our battery of tests described
above. Unfortunately, his model suffered from inadequate be-
havior in dynamic tests such as injection of ramp and sinusoidal
currents [31]. Therefore, also for the FF MN model, major de-
partures from existing models had to be chosen for improved
representation of real MN behavior.

2.1.6. Models for the somatic calcium currents
The somatic calcium currents are important in MNs with

respect to the slow calcium-dependent potassium currents
while they exert little direct influence on the action poten-
tial itself. The N-type Ca2+ current was modeled as done
in [13], but with changes in some parameter values: ICaN =
gmaxm

2
NhN(Vm − ECa), with gmax = 2.00 mS/cm2 for type S

MN, gmax = 2.13 mS/cm2 for FR MN, gmax = 2.00 mS/cm2

for FF MN and ECa = 140 mV. The membrane potential and
the ionic equilibrium potentials represent variations about the
resting potential. The activation and inactivation state variables
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mN and hN were described by a standard first order differential
equation dx/dt = (x∞ − x)/�, where x stands for either state
variable, with the following steady-state functions and time
constants, equal for the three types of MNs:

mN: mN∞ = 1

1 + e((Vm−40)/−5)
,

�mN = 4 ms,

hN: hN∞ = 1

1 + e((Vm−25)/10)
,

�hN = 40 ms.

The model structure for the L-type Ca2+ current was similar
to that used in [12], but with the activation variable squared, as
done in [32], and with a larger time constant (but still within
physiological limits). This turned out to be necessary for a bet-
ter reproduction of the cat MN AHP time course and a better
reproduction of the firing rate adaptation (early phase) found
in the cat literature. The current was described by LCaL =
gmaxm

2
L(Vm −ECa), with gmax = 2.60 mS/cm2 for type S MN,

gmax = 2.67 mS/cm2 for FR MN, gmax = 2.50 mS/cm2 for FF
MN and ECa = 140 mV. The activation state variable mL was
described by the same type of first order differential equation
as above for the N-type current, with the following steady-state
function and time constant, equal for the three types of MNs:

mL inf = 1

1 + e((Vm−25)/−5)
,

�mN = 40 ms.

2.1.7. Calcium concentration in the cytoplasm
Several possibilities of modeling the relation between the

calcium concentration and the calcium current were tried out by
running exhaustive simulations. The best results were obtained
by the proposal described in [5], but with a change in the value
of �q :

d[Ca+2]
dt

(mmol/l/ms) = c

A�
ICa(103 C/l/ms)

− �q [Ca+2](mmol/l/ms)

with c=400 mmol/103 C, �=2 ×10−4 �m and �q =0.10 m/s
(�q = 0.09 m/s for type S MN). For each MN type, the respec-
tive soma area A is to be employed in the equation above.

2.1.8. Slow, calcium-dependent, potassium current of type SK
This type of low-conductance calcium-dependent potas-

sium channel is discussed in [30] and its current, in-
cluded only in the soma, was modeled here by ISKs(soma) =
gmax([Ca2+]/Kd)2(Vm − EK), with EK = −10 mV and
gmax = 3.00 mS/cm2, Kd = 0.15 for the type S MN model,
gmax = 23.40 mS/cm2, Kd = 0.50 for the type FR MN model
and gmax = 22.00 mS/cm2, Kd = 0.80 for the type FF MN
model. It is very sensitive to higher calcium concentrations,
its saturation depending only on the saturation of calcium in
the cytoplasm. In developing the MN models, we initially only

included this slow potassium current but the results were not
good. For example, for injected step currents the first inter-
spike interval was longer than the following ones; above cer-
tain constant input current amplitudes there were oscillations in
the interspike intervals (both behaviors being atypical of MNs
in normal conditions). The addition of another slow potassium
current, the BK type, conferred the appropriate dynamics to the
MN models.

2.1.9. Slow, calcium-dependent, potassium current of type BK
This current, also included only in the soma, was modeled

with a voltage dependence that is structurally similar to the
slow potassium current described in [2,4] but with an added
explicit calcium dependence, which was adapted from [32]:
IBKs(soma) = gmaxq

2r(Vm − EK). For the types S, FR and FF
MNs, the values of gmax were 9.00, 35.00 and 32.00 mS/cm2

and EK = −10 mV. The activation variable was described by
dq/dt = �q(1 − q) − �q , where

�q = 3.5

e((Vm−45)/−4) + 1
for the three of MNs,

�q = �num

e((Vm+50)/−0.001) + 1
with �num = 0.018,

0.042 and 0.048 for the types S, FR and FF

MNs, respectively, and

r = [Ca2+]
[Ca2+] + �

with � = 0.4

for types S and FR MNs and � = 0.2 for type FF.

The voltage sensitivity of this current had to be increased [30]
from the original Jones and Bawa formulation in [2] and, there-
fore, the steady-state curve of the activation variable was shifted
to the left by 10 mV. Due to the steep sigmoidal curve, the ac-
tivation variable squared q2 remains near zero for membrane
potentials below threshold and increases fast to maximal activa-
tion around threshold. Therefore, the conductance is activated
by an action potential and decays with an exponential time
course. The calcium dependence of this current is described by
a rather steep curve, according to what has been described ex-
perimentally [30]. Therefore, as the activation variable r eas-
ily reaches values near 1 for small calcium concentrations, the
voltage dependence of this modeled BK-type channel usually
prevails. The interplay of the dynamics of the two types of
calcium-dependent potassium currents was able to improve the
reproduction of many behaviors observed in real MNs, as will
be shown in Results.

2.1.10. Synaptic inputs
Excitatory synaptic inputs generated synaptic currents mod-

eled by Isyn(t) = gsyn(t) ∗ (Vm − Esyn), where Esyn = 70 mV
and gsyn =gmaxte−t/�, with t =0.2 ms. For computational con-
venience in applications with trains of presynaptic inputs acti-
vating the dendritic synapses, the synaptic conductance in each
dendritic compartment was simulated as the impulse response
of a second order linear system. The value of gmax in a given
dendritic compartment was given by the peak conductance of a
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Table 4
Free and fixed parameters in model tuning

Free parameters (or variables) Fixed parameters (or variables)

gmaxBK (maximal conductance for slow potassium current type BK) Maximal conductance for all currents except for those in the first column
gmaxSK (maximal conductance for slow potassium current type SK) All variables � and �, except for those in the first column
gmaxCaN (maximal conductance for calcium current type N) All membrane capacitances
gmaxCaL (maximal conductance for calcium current type L) All coupling conductances
�q (state variable for slow potassium current type BK) All membrane conductances
Kd (constant related to slow potassium current type SK)

single synaptic contact times the number of synaptic contacts on
that dendritic compartment. In some simulations we wanted to
study the effect of a sinusoidal variation in gsyn on the somatic
current (i.e., the current entering the soma from the dendritic
tree) and hence in such cases we imposed directly gsyn(t) =
A cos(�0t).

2.1.11. Model tuning
The basic criteria for model adjustments were the minimiza-

tion of the errors between simulated and real MN data with
respect to the AHP and the f/I relation simultaneously, with
a secondary priority given to the time course of the firing rate
adaptation. Experiments in cat MNs have shown that their f/I

curves are approximately linear, with the possibility of a higher
slope secondary linear range occurring mainly for S-type MNs
discharging steadily at higher rates (above several dozens of ac-
tion potentials/s) [26]. The secondary range may be caused by
the activation of a persistent current due to the increase in fir-
ing threshold at higher discharge rates [33]. From a functional
point of view the primary range seems to be the most important
since it is associated with the highest sensitivity of force devel-
opment by the muscle units [26]. Additionally, the higher firing
rates associated with the secondary range (at least in S-type
MNs) do not seem to occur in humans [34,35]. Therefore, in
the present work the focus was on the appropriate reproduction
of the f/I relation in the primary firing range of real MNs.

After the final model structure was arrived at, several pa-
rameters were adjusted to decrease the fitting errors. The AHP
amplitude could be adjusted by varying the density of slow K+
channels in the soma, but also by changing the Ca2+ channel
density in the soma, or both. Within this context four parameter
values could be altered to obtain the desired AHP amplitude: the
maximum conductances of the BK and SK potassium currents
and those of the N- and L-type calcium channels. This task,
nevertheless, was not that easy because if improper parameter
values were used, the calcium currents could alter significantly
the action potential time course. Initially, maximum Ca2+
conductances were determined so that a desired firing rate
adaptation occurred while causing a calcium concentration that
indirectly would yield desired slow potassium currents. After
these adjustments, the slow potassium maximum conductance
values could be changed until a desired AHP peak value was
reached. On the other hand, the AHP duration and time for
half decay could be adjusted by the constant Kd of the SK
potassium current and by variable �q of the BK potassium cur-
rent. As soon as an adequate AHP was obtained, the slope of

the f/I curve was estimated using a least squares algorithm.
Many times a good result with the AHP did not correspond
to a good f/I curve slope because the active currents do not
have the same behavior for long depolarizations (used to find
the f/I relation) as for short duration current stimuli (used for
AHP fitting).

Some parameters, like the fast sodium and potassium con-
ductances, were adjusted only once to reproduce the magnitude
of the action potential described in the cat literature. Other pa-
rameters, like the geometry-dependent dendritic conductances
and capacitances, were kept unaltered once they were com-
puted. A synthesis of the free and fixed parameters involved in
the model fitting is shown in Table 4.

2.2. Battery of tests for MN model validation

Both static and dynamic tests were included in the battery.
The static tests are associated with the neuron at rest, or dis-
charging either a single action potential (in response to a single
current pulse) or a train of action potentials (recorded in steady
state in response to a constant current injected at the soma).
The dynamic tests involved cases where the input current am-
plitude varied with time: steps, ramps and sinusoids. The first
would be an approximation to the resultant somatic currents
of synaptic origin due to descending commands for a ballis-
tic movement. The second mimics the equivalent somatic cur-
rent for a gradually increasing muscle activation and the third
mimics what should happen during rhythmic movements, like
walking or running. We tried to follow similar procedures to
those employed experimentally by researchers of MN physiol-
ogy. Each of the tests is briefly described in what follows.

2.2.1. Input resistance
Hyperpolarizing input current pulses (50 ms) of three dif-

ferent amplitudes (1.0, 2.0 and 3.0 nA) were applied to the
soma and the resulting membrane potential was measured at
the pulse end. The input resistance was estimated by the slope
of a straight line fitted to the three (I, V ) values. Experimental
values were taken from [29].

2.2.2. System time constant
Short (0.2 ms) hyperpolarizing current pulses were injected

in the soma and the resulting membrane potential time course
was plotted in semi-logarithmic scale to yield an estimate of the
time constant, computed where the plot was already a straight
line. Experimental values for comparison were taken from [29].
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2.2.3. AHP parameters
An action potential was fired by a short (0.5 ms) current pulse

injected in the soma, and the AHP peak amplitude, duration,
time of half decay and time to peak were measured. Experi-
mental values were taken from [24].

2.2.4. Tests using a constant current input
From these tests the rheobase, the minimum firing rate and

the f/I curve could be evaluated. The rheobase was estimated
as the smallest current intensity that for 50 ms could fire at
least one action potential. The constant current value was in-
creased until a steady repetitive firing pattern was obtained. This
yielded the minimum firing rate. The f/I curve was obtained
by plotting the mean discharge rate, measured after the firing
rate reached a steady-state value, as a function of the injected
current step amplitude. Experimental reference data were taken
from [22,24,36].

2.2.5. Step current input
The firing rate usually decayed to a steady-state rate value.

The firing rate adaptation was evaluated by plots of the instan-
taneous rate (inverse of each interspike interval) as a function
of time. Experimental values for model validation were taken
from [37].

2.2.6. Ramp current input
The instantaneous firing rate was plotted as a function of

time for different ramp velocities. Actually the inputs were
ramp-and-hold currents, so that the instantaneous firing rate
was plotted during the ramp as well as during the plateau.
Experimental values were taken from [23,38].

2.2.7. Sinusoidal current input
As the experimental reference data used in the models’ val-

idation came from Refs. [22,39], we followed their methodol-
ogy. The input was a sinusoidal current superimposed on a step
current, the latter setting up a basal firing rate. The sinusoidal
current variation resulted in a quasi-sinusoidal firing rate vari-
ation of the neuron, with a gain and a phase that depended on
the input sinusoidal frequency. The gain was estimated using
a few different input amplitudes and measuring the resulting
amplitudes of frequency modulation. For a given pair of input
current frequency and amplitude, the instantaneous frequencies
were computed from the ongoing neuronal spike train for many
input cycles and used to build a cycle histogram. Peak instan-
taneous frequencies measured from the cycle histograms were
plotted as a function of the input amplitude of the sinusoids.
The slope of such a curve (spikes/s nA) was taken as the gain
at that frequency while the phase was derived from an FFT.

3. Results

The simulation results of the three MN models will focus
on their validation, i.e., we shall compare the model simulation
results with those from real MNs as described in cat literature.

Table 5
Input resistance

Type S
(M�)

Type FR
(M�)

Type FF
(M�)

Proposed models 3.22 1.24 0.69
Fleshman et al. [29] 4.2 1.4 0.7
Gustaffson and Pinter [40] [1.7–4.0] [1.2–1.7] [0.6–1.2]
Jones and Bawa [2] models 3.9 2.0 –
Traub’s [4,5] models 2.0 1.5 1.0

Table 6
System time constant

Type S
(ms)

Type FR
(ms)

Type FF
(ms)

Proposed models 12.8 6.9 7.2
Fleshman et al. [29] 13.0 6.8 6.9
Jones and Bawa [2] models 16.4 8.8 –
Traub’s [4,5] models – – 2.78

3.1. Input resistance

The resistance measured from the soma of the S, FR and
FF models were 3.22, 1.24 and 0.69 M�, respectively. These
values reproduce reasonably well experimental and simulation
results from cat lumbar MNs: (i) the data for the 35/4, 43/5
and 41/2 MNs described in [29] were 4.2, 1.4 and 0.7 M�,
respectively; (ii) the experimentally measured ranges for S, FR
and FF cat lumbar MNs found in [40] were, approximately,
1.7–4.0, 1.2–1.7 and 0.6–1.2 M�, respectively. These results
are summarized in Table 5.

3.2. System time constant

The system time constants for the S, FR and FF models re-
sulted as 12.8, 6.9 and 7.2 ms, respectively. These values com-
pare well with those reported in [29]: 13.0, 6.8 and 6.9 ms.
The ranges found from cat lumbar experiments have a reason-
able overlap [24,40], so this parameter is not a characteristic
feature of different MN types. These results are summarized
in Table 6.

3.3. AHP parameters

The S-type MN model presented a peak AHP value 6.18 mV,
an AHP duration 164.50 ms and AHP half-decay time 33.57 ms.
The corresponding values for the FR MN model were 4.28 mV,
78.77 ms and 18.02 ms, while for the FF they were 2.80 mV,
65.69 ms and 13.98 ms. These results are within the experimen-
tal ranges obtained from the cat. For example, the AHP du-
rations measured from gastrocnemius MNs from 42 cats [24]
were in the ranges 75–285, 45–150 and 30–135 ms, for the S,
FR and FF types, respectively. These results are summarized
in Table 7. The AHP waveforms are shown in Fig. 2.
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Fig. 2. Afterhyperpolarization (AHP) time courses that resulted from the
simulations of the three motoneuron models.

3.4. Tests using a constant current input

The rheobase for the S, FR and FF models were 3.02, 8.20
and 19.09 nA, being within the ranges found for cat gastroc-
nemius MNs [24,40]. For example, from the data in [40]
the approximate rheobase ranges were 1.2–8.0, 7.5–15.0 and
14.0–32.0 nA for the S, FR and FF MNs (Table 8).

A slightly higher constant input current to each MN model
assured a steady discharge, with minimum rates 7.59, 13.45 and
15.48 spikes/s, for the S, FR and FF models, respectively. Even
though the authors in [28,29] did not measure the minimum fir-
ing rates of the three MNs that were our prototypes for model
building, the ordering of minimum rates from the S to the FF
types and their values are compatible with findings from cat
lumbosacral MNs [25,41]. The f/I relations for the S, FR and
FF MN models showed slopes 1.11, 1.05 and 1.45 imp/s/nA,
which are compatible with data from cat literature for the pri-
mary range [22,41,42] (Table 9).

3.5. Step current input

The previous test was associated with the steady-state re-
sponse to an injected step current. The transient response to
such an input—the firing rate adaptation—gives a partial pic-
ture of the dynamics of each model. Fig. 3 shows the instan-
taneous firing rate (inverse of the interspike intervals) as a
function of time for one of the models. The adaptation follows
a time course found in some real MNs (see inset) [37,43].

An alternative view of the adaptation process is based on
the comparison of the graphs of (1/1st interspike interval) and
(1/steady-state interspike interval) as a function of the current
intensity. Such a relation is shown in Fig. 4 (empty circles) for
the FF MN model. The effect of the firing rate adaptation is
quite clear in the much larger slope of the relation associated
with the first interval instantaneous rate when compared with
the steady-state relation. The steady-state behavior was quite
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Table 8
Rheobase

Type S (nA) Type FR (nA) Type FF (nA)

Proposed models 3.02 8.20 19.09
Zengel et al. [24] 5.0 ± 0.3 [2–8] 12.0 ± 0.4 [8–18] 21.3 ± 0.5 [10–38]
Fleshman et al. [55] 5.1 ± 0.5 [2–9] 12.8 ± 0.6 [8–20] 19.7 ± 0.8 [5–27]
Gustaffson and Pinter [40] [1.2–8.0] [7.5–15.0] [14.0–32.0]
Jones and Bawa [2] models 2.53 4.1 –

Table 9
f/I relations slope

Type S (imp/s/nA) Type FR (imp/s/nA) Type FF (imp/s/nA)

Proposed models 1.11 1.05 1.45
Baldissera et al. [22] – 0.5 and 1.7 0.5 and 1.7
Jones and Bawa [2] models 4.4 5.4 –
Traub́s [4,5] models – – 2.21

Fig. 3. Instantaneous firing rates for the FR motoneuron model when a 20 nA
current step was injected. The points were joined to facilitate the visualization.
There is a good agreement with a hypoglossal motoneuron adaptation data
shown in the inset (adapted from [43]).

similar to that reported for the cat (stars), as reported in [22,38].
On the other hand, there was a larger discrepancy in the first
interval relation, the model showing a much smaller slope than
that found in the cat data.

A detailed analysis of the somatic currents showed that the
type N calcium current decreases after the initial spikes while
the type L calcium current increases. This causes a gradual
increase in the SK-type potassium current, which has an im-
portant influence on the firing rate adaptation in each of the
models.

3.6. Ramp current input

The ramp-and-hold currents injected in the somas of the
three MN models were similar to those used in cat experiments
described in [23,38]. Such inputs are important in testing the

Fig. 4. Graph of f/I data points for the FF motoneuron model (open
circles) compared to biological F motoneuron data from Baldissera et al. [22]
(asterisks). The steady-state values are practically superimposed. On the other
hand, the instantaneous rates corresponding to the first interspike interval are
much smaller in the model than in the experimental data. The straight lines
are minimum mean square error fits.

dynamics of real and model neurons. As the available exper-
imental data from the literature covers mainly type F MNs,
we shall emphasize results for the FF/FR MN models. Fig. 5
shows some results for the FF model, all for ramp-and-hold in-
put currents with a plateau of 38 nA, comparing with the exper-
imental data reported in [22]. In both (a) and (b) in Fig. 5, the
first box shows experimental data and the others are from the
model simulation. The steady-state discharge rate in all cases
was around 70 spikes/s but the transient instantaneous rates
show a clear sensitivity to the slope of the input current ramp.
Comparing Figs. 5(a) and (b) it can be concluded that the model
neuron is able to encode the rate of change of the current. For
example, when the slope increased from 0.22 to 1.23 nA/ms,
the peak instantaneous firing rate increased from about 80 to
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Fig. 5. Plots of the spike trains, instantaneous rates and injected current in the soma for two cases: (a) slope of injected current of 0.22 nA/ms, (b) slope of
injected current of 1.23 nA/ms. Both ramp-and-hold input currents had a plateau value 38 nA. The top of each column shows experimental data (spikes at the
left and instantaneous rate on the right) adapted from Ref. [22]. The other three graphs in each column refer to results from model simulations.

about 140 spikes/s. These findings are in agreement with ex-
perimental data [23,38], if not precisely but in the same order
of magnitude. Similar results, except for a smaller steady-state
firing rate around 67 spikes/s, were found for the FR model
when subjected to the same input currents. When some mathe-
matical models of MNs found in the literature were tested with
the ramp-and-hold inputs (or step inputs), their behaviors were
quite poor when compared with the experimental results from
the literature, probably due to differences in the modeling of
the slow dynamic channels in the soma.

A further quantification of the ramp encoding properties of
the FF model is shown in Fig. 6, where we plot the instantaneous
frequencies for the first to the fourth intervals as a function

of the slope of the input current ramp, all for a 38 nA plateau
level. The data for the first interval in Fig. 6 is similar to the
experimental points obtained in [23] for their Unit 1 (see their
Fig. 5C). Also, the increase in the slopes of the relations in Fig. 6
from the first to the fourth intervals reproduces findings from cat
MNs [38, their Fig. 3]. The slopes, measured in imp/s/nA/ms,
of best line fits to the four plots in their rising phase were 49.4,
81.9, 120.2 and 151.0. In Fig. 7C of [38] a scatterplot is shown
relating the slopes for the first interval from 16 type F MNs and
the mean of their data is around 60 imp/s/nA/ms, with a range
from 43 to 90 imp/s/nA/ms (eliminating an apparent outlier).
Therefore, the slope 49.4 imp/s/nA/ms that we found is within
the normal range for fast-type MNs.
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Fig. 6. Relations between MN instantaneous rate and input current ramp
slope. The graphs are for the first, second, third and fourth interspike intervals
(ISI) obtained from simulations of the FF-type MN model, all for current
plateau values 38 nA.

Fig. 7. Membrane potential of the FF MN model showing the resulting spike
train for a sinusoidal injected current of 10 Hz. The basal discharge rate of
the model was set at 52 spikes/s through the injection of a constant current
(∼ 28 nA), upon which the sinusoidal current signal was added.

3.7. Sinusoidal current input

The available experimental data on the frequency response
of MNs cover only F-type units [22,39], hence the model vali-
dation tests with sinusoidal currents will be useful only for the
FR/FF models. A sinusoidal input current at “low” frequencies
(e.g., below 10 Hz) caused a reasonably clear frequency mod-
ulation of the instantaneous rate of any of the MN models, as
exemplified in Fig. 7 for the FF model. Such a sinusoidal in-
put is useful to probe the frequency response function (gain
and phase curves) between input current and output firing rate
modulation.

The gain and phase curves for the FR and FF models when
displayed together with the experimental curves obtained from
10 MNs, based on Table 1 in [22], were contained within the ex-
perimental range (not shown). In Fig. 8 we show gain and phase
curves for (i) the FF MN model (asterisks), (ii) the model re-
ported in [2,3] (circles), (iii) the model reported in [4] (crosses)
and (iv) a fit done in [22] to their cell number 8 (squares, based
on their Table 1). This cell was chosen because it had a similar
steady-state f/I slope as the FF model (1.45 imp/s/nA, see Re-
sults). There is a reasonably good fit of the model’s gain curve
with the experimental data up to about 12 Hz. The discrepancy
for the higher frequencies is possibly due, in part, to the dif-
ficulties of fitting a sinusoid to the instantaneous rate modu-
lation. The phase curve for the model follows approximately
the average experimental curve albeit with some discrepancies
between 1 and 5 Hz. However, the proposed model shows an
improvement over the models reported in [2–4] in regard to the
frequency response.

3.8. Frequency response between synaptic inputs and somatic
current

The somatic current that comes from the dendritic tree is a
determinant factor influencing the neuron’s firing pattern. In the
models, this current is the one being coupled from the first den-
dritic compartment (dendritic segment d0) to the soma, which
we call IS . In order to quantify how rhythmic synaptic inputs
(which occurs during rhythmic movements) applied at differ-
ent parts of the dendritic tree affect the soma, we computed
the frequency response curves corresponding to synaptic in-
puts occurring at a few dendritic sites (Fig. 9, for the S-type
model). Each synaptic conductance was varied sinusoidally and
the amplitude and phase of the resulting fundamental compo-
nent of the soma current was determined by an FFT. As ex-
pected, synaptic inputs nearer the soma resulted in higher cut-
off frequencies, as can be seen from Table 1 for the three types
of MN models, S, FR and FF. The phase curves for the S-type
MN model showed phase shifts around 100◦ for synapses ac-
tivated at about 15 Hz farther than the middle of the equivalent
dendritic cable. A similar phase shift value occurred for the FR
and FF models around 25–30 Hz.

From Table 10 we conclude that the S-type model has lower
cutoff frequencies than the type F models, for similarly located
synaptic inputs. The FR and FF models showed clearer dif-
ferences in cutoff frequencies when the synaptic inputs were
nearer the soma.

Very similar results were found when the input was a si-
nusoidal current injected in a given dendritic compartment
(instead of sinusoidally varying the conductance), probably be-
cause the conductance oscillations were small enough to avoid
the influence of neuronal nonlinearities.

3.9. Nonlinearity of the signal transfer from different
dendritic sites to the soma

The nonlinear interactions between two dendritic sites, as
measured by the somatic current, subjected to independent
synaptic inputs may arise both from local effects and from the
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Fig. 8. Frequency response of the discharge rate modulation obtained from simulations of the FF MN model (asterisks) compared with real MN data (Baldissera
et al. [22], open squares), and simulated data from the Jones and Bawa [2] (open circles) and the Traub [4,5] models (crosses). In (a) are the gain curves and
in (b) the phase curves.

nonlinear dynamics of the soma. However, if the postsynaptic
effects are modeled as changes in dendritic current instead of
dendritic conductance, the local interactions will be linear in the
passive dendritic tree model but the soma dynamics may still
introduce nonlinearities in the mapping from the synaptic input
currents to the current reaching the soma. In these simulations
we wanted to study the nonlinearities in the transformation of
synaptic inputs to the soma current (which arises from the den-
dritic segment d0). A given synaptic input was modeled in two

alternate ways: by varying sinusoidally a dendritic compart-
ment conductance or by varying its current. Two such synaptic
inputs were applied to different dendritic compartments, one at
a frequency of 7 Hz and the other at 11 Hz. For the comparisons
to be valid, the peak-to-peak amplitudes of the currents reach-
ing the soma in the two situations (conductance versus current
dendritic inputs) were made equal. The Fourier transform of the
somatic current coming from dendritic segment d0 was used to
determine the harmonic distortions associated with each input
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Fig. 9. Gain (a) and phase curves (b) of the transfer between sinusoidal conductance changes applied at each of the dendritic compartments d0, d5, d12 and
d16 and the resulting sinusoidal current entering the soma.

Table 10
Cutoff frequencies between dendritic segments and the soma for S, FR and
FF models

Cutoff frequency at −3 dB (Hz) Cutoff frequency at −20 dB (Hz)

d0 25/30/40 500/800/3200
d5 15/22/22 100/150/200
d12 12/22/20 60/110/110
d16 10/20/14 58/108/90

and the intermodulation distortions caused by the interactions
of the two inputs. The former could appear in the spectrum
at frequencies such as 14 and 22 Hz, while the latter could
appear at spectral frequencies such as 4 and 18 Hz. There are
classical quantifiers of system nonlinearity used in electronics
as the total harmonic distortion (THD) but we think they are less
appropriate in the neurophysiology context. Hence, we chose
to quantify the distortions associated with the main spurious

components detected in the soma current. More precisely, we
measured the ratio of the spectral peaks at each of the main
spurious components, found at 4, 14, 18, 22 Hz, to the lowest
spectral peak at the two input frequencies (7 or 11 Hz).

Table 11 shows the results obtained from simulations where
11 and 7 Hz sinusoidal synaptic conductance changes were ap-
plied to adjacent dendritic segments Si and Si+1, respectively,
to the FF-type MN model (similar conclusions were reached
when data from the S and FR models were analyzed). For
all dendritic levels, the 7 Hz component had a lower ampli-
tude in the output spectrum than the 11 Hz component, so it
was used as a reference to compute distortion. The data from
Table 11 suggests that the distortion increases as the (conduc-
tance changes due to) synaptic inputs occur more distally. Also,
the harmonic distortions (i.e., at 2f2 and 2f1) are smaller than
intermodulation distortions when synaptic conductances occur
close together (except at the two more distal compartments).
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Table 11
Levels in dB of the power at each spurious frequency with respect to the power at 7 Hz for the FF model with conductance changes at dendritic segments Si

and Si+1

Dendrites f1 − f2 (4.0 Hz) 2f2 (14.0 Hz) f1 + f2 (18.0 Hz) 2f1 (22.0 Hz)

0–1 −28.64 −32.75 −29.51 −34.42
2–3 −25.61 −30.56 −26.76 −32.18
4–5 −23.57 −28.73 −24.82 −30.61
6–7 −21.62 −26.55 −22.94 −28.77
8–9 −18.98 −23.98 −20.43 −26.35
10–11 −16.72 −21.72 −18.28 −24.00
12–13 −14.04 −18.37 −15.67 −20.53
14–15 −10.61 −14.66 −12.47 −15.58
16–17 −6.02 −8.71 −8.14 −3.04

Table 12
Levels in dB of the power at each spurious frequency with respect to the power at 7 Hz for the FF model with conductance changes at dendritic segments Si

and Si+5

Dendrites f1 − f2 (4.0 Hz) 2f2 (14.0 Hz) f1 + f2 (18.0 Hz) 2f1 (22.0 Hz)

0–5 −30.16 −28.35 −31.11 −31.72
2–7 −26.85 −26.17 −27.84 −29.46
4–9 −24.55 −23.46 −25.58 −27.63
6–11 −22.23 −21.06 −23.36 −25.65
8–13 −19.31 −17.71 −20.63 −22.04
10–15 −16.79 −13.75 −18.28 −16.56
12–17 −13.50 −8.16 −15.23 −3.79

The next group of simulations investigated the distortions
when the two synaptic inputs, at 11 and 7 Hz, were not on adja-
cent segments, but were on segments Si and Si+5, respectively.
For all dendritic levels, the 7 Hz component had the lower am-
plitude in the output spectrum between the 7 and 11 Hz compo-
nents, so it was used as a reference to compute distortion. The
results are shown in Table 12, which shows that again the dis-
tortion increases when the inputs occur more distally. Finally,
and perhaps surprisingly, if we fix the more proximal synap-
tic input (e.g., at dendritic segment 4) the worst-case distor-
tion level is similar in the situations Si/Si+1, and Si/Si+5, but
it occurs at different frequencies (4 and 14 Hz, respectively).
However, if we take the mean position between the two synap-
tic locations as being equal in the two situations Si/Si+1, and
Si/Si+5 (e.g., Si/Si+1 at segments 4 and 5 and Si/Si+5 at seg-
ments 2 and 7), then the higher distortion occurs when the two
synaptic contacts are closer together.

When the two synaptic inputs were simulated by current in-
jection, with the same paradigms as before, the resulting non-
linear effects were quite small, from −52 to −83 dB, being
larger for proximal synaptic inputs than for distal, as expected
from theoretical considerations.

The results of Sections 3.8 and 3.9 do not have an exper-
imental counterpart, so they should be seen as predictions of
what must occur, at least in approximation, with real MNs.

4. Discussion

The modeling effort presented in this paper has two distin-
guishing features: (a) the three models were developed in an

integrated manner and cover the main types of MNs found in
vertebrate spinal cords; (b) the model evaluation had a wider
scope than found elsewhere, including several dynamic tests
of clear functional relevance which are optimally matched to
muscle unit behavior [45]. The models exhibited many behav-
iors found in real MNs and they seem to have a greater level
of generalization when compared with other models reported
in literature.

In terms of applications of the developed models, the selected
level of model complexity makes them well suited to investiga-
tions of many single neuron phenomena such as action poten-
tial backpropagation on the dendritic tree, spike train variability
due to synaptic bombardment on the dendritic tree, effects of
synaptic input synchrony on the MN spike train statistics and
nonlinear dendritic interactions. We believe the models are also
suitable for use in simulators of the behavior of MN pools, if
they are implemented in a multiprocessor fast machine or in
computer clusters, and use optimized code. Such simulators,
if they are required to be reasonably realistic at the neuronal
level, have to include MN models that have some represen-
tation of the spatio-temporal transformation enacted by den-
drites, besides including MN descriptions that cover the gamut
from S type to FF type. These aspects were contemplated in the
present work.

The dendrite-to-soma synaptic transfer had lowpass charac-
teristics, with cutoff frequencies increasing from the S to the F
models and decreasing when the inputs were located more dis-
tally. The −3 dB cutoff frequencies were equal or larger than
10 Hz, this lowest value occurring for the most apically lo-
cated synaptic inputs. In humans the maximum frequencies of
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rhythmic voluntary muscle activation are usually lower than
10 Hz (unpublished accelerometer measurements obtained in
our lab from different human muscles and [39]). Therefore,
in terms of such fast rhythmic behaviors, even synaptic inputs
occurring at distal parts of the dendritic tree would affect the
soma with little attenuation. More complex situations include
a possible compensation of the smaller effective length con-
stant [46], when the dendritic tree is under a barrage, with the
activation of voltage-dependent dendritic channels turned by
neuromodulators [47].

The nonlinear interactions of two independent synaptic in-
puts occurring at different levels of the dendritic tree were found
to be increasing distally when modeled by conductance vari-
ations. The nonlinear effects were also higher when the two
synaptic inputs were located closer to each other. These results
are not a direct consequence of Rall’s findings [44,48] because
our model includes a strongly nonlinear soma compartment,
which could impose a higher nonlinearity for synaptic inputs
occurring at proximal dendritic compartments. Actually, if our
tests had included higher synaptic conductance variations, prox-
imal synaptic inputs could indeed present stronger nonlinear in-
teractions than inputs located at more intermediate parts of the
dendritic tree. The intermodulation nonlinearity, well known to
occur in multiplicative interactions between two signals, was
higher when the synapses modeled by conductance changes
were close together, which would be expected from stronger in-
teractions of the two compartments’ membrane potentials. On
the other hand, when synaptic inputs were modeled by injecting
current in dendritic compartments, the nonlinear effects were
very small. These effects decreased when the synapses moved
distally, as they became more isolated from the nonlinear so-
matic conductances. The frequency domain analysis we adopted
to quantify nonlinear dendritic effects is a novel feature of this
work. When compared with some other approaches (e.g., that
quantify the summation of current reaching the soma), it has
the advantage of including the dynamics of the soma and the
dendritic tree. The sinusoidal variation of conductance applied
to a given dendritic compartment could represent what hap-
pens during rhythmic movements. In such conditions, the MNs
will be receiving multiple synaptic activations from descend-
ing pathways exhibiting a periodic variation in the intensity of
(the point processes associated with) the spike trains. The non-
linearities uncovered by the computer simulations were usually
quite small, with the exception of synaptic inputs located at the
very distal dendritic compartments.

From the available anatomical data it is not clear at the mo-
ment if there are specific pathways that synapse only at the
most distal dendritic portions [49]. However, the dendritic tree
may be switched (e.g., by serotonin released from the brain-
stem) from passive dynamics (i.e., with fixed conductances),
modeled in the present work, to an active one, with voltage-
sensitive conductances [50]. Very probably, the ensuing non-
linearities in the mapping of rhythmic synaptic activations to
somatic current (e.g., evaluated with the method proposed in
the present work) will be much greater than that for the passive
dendritic case. The functional consequences could permeate to
the study of neurological diseases [51].

The model fitting was done with the human modeler always
in the feedback loop. There was an ad hoc search of the most
important parameters for a given target response feature or be-
havior (see Section 2.1.11). In a restricted sense, an empiri-
cal sensitivity analysis was realized for a subset of the model
parameters. However, it would certainly be a challenging and
fruitful effort to apply more formal computer-based approaches
to neuronal model fitting [52–54] in future work on mammalian
MN modeling.

In conclusion, three models for cat MNs were developed
that tried to represent some of the main known biophysical
ionic channels and some basic dendritic structure. The models
were able to mimic several dynamic behaviors found in real
MNs. The frequency responses associated with synaptic inputs
occurring at different dendritic levels suggested that even distal
synaptic inputs may drive the MN at the maximum frequency
found in physiological oscillatory movement. Both harmonic
and intermodulation distortions were found when two synaptic
inputs activated different dendritic regions.

5. Summary

Mathematical models of MNs of the three main types—S,
FR and FF—were developed based on cat MN data. The mod-
els, represented by sets of nonlinear differential equations, were
encoded in C++. Each of the three models was composed of
three main compartments: initial segment, soma and dendritic
tree. The initial segment was described by a Hodgkin–Huxley-
type model. The soma included a description of slow potassium
currents, calcium currents and a calcium-dependent slow potas-
sium current. The dendritic tree was modeled as a series as-
sociation of passive equivalent cylinders of varying diameters.
The parameters were based on cat MN morphological and elec-
trical data. The dynamics of the channels associated with the
somatic currents gave the models the capability of reproducing
important physiological features such as AHP summation and
MN firing adaptation. The models also reproduced the sensitiv-
ity of real MNs to ramp and sinusoidal currents injected in the
soma. In particular, the models showed increased instantaneous
firing rates to faster ramp inputs and to higher frequencies of
sinusoidal inputs.

Other computer simulations reported here include the anal-
ysis of the frequency response of the somatic current with re-
spect to synaptic inputs applied at different levels of the den-
dritic tree of each model. The resulting frequency responses
were of the lowpass type, with 10 Hz being the smallest cut-
off frequency found for synaptic conductance modulations oc-
curring at the most apical dendritic compartment of the type
S MN model. Finally, nonlinear interactions between sinu-
soidally varying dendritic conductances occurring at two com-
partments, as measured from the current reaching the soma,
were found to be higher for more distal compartments. The re-
sulting models should be useful in computer simulation studies
of the dynamics of single motor units in isolation or as parts of
a large-scale neuronal network representing the circuitry of the
spinal cord.
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Appendix

Membrane conductances and capacitances of the dendritic compartments for the three MN models:

Dendritic compartments For type S MN model For type FR MN model For type FF MN model

gdi
(mS) Cdi

(�F) gdi
(mS) Cdi

(�F) gdi
(mS) Cdi

(�F)

d0 1.96 × 10−5 3.93 × 10−4 5.72 × 10−5 6.28 × 10−4 2.75 × 10−5 5.50 × 10−4

d1 1.96 × 10−5 3.93 × 10−4 5.72 × 10−5 6.28 × 10−4 2.75 × 10−5 5.50 × 10−4

d2 1.96 × 10−5 3.93 × 10−4 5.72 × 10−5 6.28 × 10−4 2.75 × 10−5 5.50 × 10−4

d3 1.96 × 10−5 3.93 × 10−4 5.72 × 10−5 6.28 × 10−4 2.75 × 10−5 5.50 × 10−4

d4 1.96 × 10−5 3.93 × 10−4 5.57 × 10−5 6.13 × 10−4 2.75 × 10−5 5.50 × 10−4

d5 1.96 × 10−5 3.93 × 10−4 5.43 × 10−5 5.97 × 10−4 2.59 × 10−5 5.18 × 10−4

d6 1.92 × 10−5 3.83 × 10−4 4.86 × 10−5 5.34 × 10−4 2.36 × 10−5 4.71 × 10−4

d7 1.67 × 10−5 3.34 × 10−4 4.29 × 10−5 4.71 × 10−4 2.11 × 10−5 4.23 × 10−4

d8 1.47 × 10−5 2.95 × 10−4 3.72 × 10−5 4.08 × 10−4 1.77 × 10−5 3.53 × 10−4

d9 1.28 × 10−5 2.55 × 10−4 1.57 × 10−5 1.73 × 10−4 7.62 × 10−6 1.52 × 10−4

d10 9.82 × 10−6 1.96 × 10−4 1.29 × 10−5 1.41 × 10−4 6.28 × 10−6 1.26 × 10−4

d11 7.85 × 10−6 1.57 × 10−4 1.14 × 10−5 1.26 × 10−4 5.30 × 10−6 1.06 × 10−4

d12 2.95 × 10−6 5.89 × 10−5 1.00 × 10−5 1.10 × 10−4 4.32 × 10−6 8.64 × 10−5

d13 2.06 × 10−6 4.12 × 10−5 8.29 × 10−6 9.11 × 10−5 3.53 × 10−6 7.07 × 10−5

d14 1.28 × 10−6 2.55 × 10−5 6.43 × 10−6 7.07 × 10−5 2.95 × 10−6 5.89 × 10−5

d15 3.68 × 10−7 7.36 × 10−6 5.00 × 10−6 5.50 × 10−5 1.94 × 10−6 3.89 × 10−5

d16 1.23 × 10−7 2.46 × 10−6 2.29 × 10−6 2.51 × 10−5 1.10 × 10−6 2.20 × 10−5

d17 – – 7.15 × 10−7 7.85 × 10−6 2.95 × 10−7 5.89 × 10−6

d18 – – 2.87 × 10−7 3.15 × 10−6 7.90 × 10−8 1.57 × 10−6

Coupling conductances between adjacent compartments:

For type S MN model (mS) For type FR MN model (mS) For type FF MN model (mS)

gS,IS 1.53 × 10−3 2.12 × 10−3 2.13 × 10−3

gS,d0 5.10 × 10−3 6.65 × 10−3 5.15 × 10−3

gd0,d1 1.40 × 10−3 3.59 × 10−3 2.75 × 10−3

gd1,d2 1.40 × 10−3 3.59 × 10−3 2.75 × 10−3

gd2,d3 1.40 × 10−3 3.59 × 10−3 2.75 × 10−3

gd3,d4 1.40 × 10−3 3.50 × 10−3 2.75 × 10−3

gd4,d5 1.40 × 10−3 3.32 × 10−3 2.59 × 10−3

gd5,d6 1.37 × 10−3 2.88 × 10−3 2.21 × 10−3

gd6,d7 1.15 × 10−3 2.27 × 10−3 1.80 × 10−3

gd7,d8 8.87 × 10−4 1.73 × 10−3 1.34 × 10−3

gd8,d9 6.77 × 10−4 1.79 × 10−3 1.36 × 10−3

gd9,d10 4.41 × 10−4 1.74 × 10−3 1.38 × 10−3

gd10,d11 2.74 × 10−4 1.28 × 10−3 9.56 × 10−4

gd11,d12 2.38 × 10−4 9.96 × 10−4 6.53 × 10−4

gd12,d13 1.66 × 10−4 7.16 × 10−4 4.36 × 10−4

gd13,d14 6.85 × 10−5 7.27 × 10−4 2.98 × 10−4

gd14,d15 3.79 × 10−5 2.74 × 10−4 1.89 × 10−4

gd15,d16 6.31 × 10−6 1.27 × 10−4 9.44 × 10−5

gd16,d17 – 5.10 × 10−5 3.12 × 10−5

gd17,d18 – 1.70 × 10−5 4.93 × 10−6
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Synaptic currents:

Isyn(t) = gsyn(t) ∗ (Vm − Esyn),

where gsyn = gmaxt
�e−�t/�, � = 1, � = 0.2 ms, Esyn = 70 mV.
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