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Abstract--This paper presents a new class discriminability measure based on an adaptive partitioning of the 
feature space according to the available class samples. It is intended to be used as a criterion in 
a classifier-independent feature selection procedure. The partitioning is performed according to a binary 
splitting rule and appropriate stopping criteria. Results from several tests with Gaussian and non-Gaussian, 
multidimensional and multiclass computer-generated samples, were very similar to those obtained using 
a Bayes error criterion function, i.e. the optimal feature subsets selected by both criterion functions-were the 
same. The main advantage of the new measure is that it is computationally efficient. 

Class discriminability measure Feature selection criterion function Variable selection criterion 
Feature evaluation Interclass distance measure Class separability measure 

1. INTRODUCTION 

One of the first tasks in the design of a pattern classifi- 
cation system is to choose features (also called vari- 
ables, measurements or attributes) that are thought to 
provide good discriminability among the existing pat- 
tern classes. This initial choice is based mainly ,on 
intuition and knowledge about the pattern generating 
mechanisms. If all the initially proposed features are 
used in the design and implementation of the pattern 
classification system, probably its performance will be 
inadequate, both in terms ofmisclassification rates and 
computation time and its hardware will be too expen- 
sive. 

On the other hand, as the success or failure of 
a pattern recognition system is heavily dependent on 
the choice of good features (that separate well the 
classes), it is important not to limit a priori the number 
of features. Sometimes the choice of a new feature, 
never used before in a given application, may yield 
good performance to a classifier31'2) Therefore, in- 
itially, one should propose all the features that are 
judged potentially useful for the pattern classification 
system. Thereafter, a feature selection procedure 
should be used to choose a subset of the initial features 
according to quantitative criteria that will assure 
that the feature subset is among the best one could 
obtain from the original feature set. In feature selec- 
tion the dimensionality is reduced by the elimination 
of features from an original feature set H of dimen- 
sion n resulting in a feature subset G of dimension 
d (d < n). When the overall purpose is the design of 

a pattern classification system, the class samples pro- 
jected on the features in subset G should be well 
discriminable. 

A reduction in the number of features is necessary so 
that one may (1) decrease the cost (hardware and 
computer time) of measuring the features, (2) decrease 
the cost (hardware and computer time) of the classifier 
and (3) improve the performance (e.g. decrease the 
error rate) of the classifier, t3) 

It should be added that for objectives (2) and (3), one 
may also use feature extraction which is the reduction 
of dimensionality obtained by a mapping from an 
n-dimensional feature-space to a. d-dimensional space 
(d < n). (4"5) 

The task of feature selection usually involves three 
choices: (a) a measure that quantifies the discriminabil- 
ity of the classes, (b) a search method to generate 
feature subsets from H and (c) a stopping criterion. An 
example from (b) would be a forward-backward 
search, also called "plus /-take away r", 16) and an 
example from (c) would be to stop at the best subset 
with d = 12 features when n = 30. Due to the focus of 
this paper, only item (a) will be discussed from now on. 
For overviews of many measures of class discrimina- 
bility already described in the literature see references 
(6-8). The designer of the pattern classification system 
should choose carefully the measure of class dis- 
criminability to be employed in the feature selection 
procedure, since an inadequate choice will result in 
feature subsets exhibiting poor class discriminability 
and therefore the resulting pattern classifiers will have 
poor classification performances. 
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In some applications the type of classifier to be used 
in the pattern recognition system is predefined and in 
this case it may be desirable to search for good features 
using as a criterion the minimization of the classifier 
error rate. However, for each feature subset, one will 
have to design the classifier and then estimate the error 
rate, based on the available sample set by using, for 
example, the holdout method or another more elabor- 
ate technique such as the bootstrap. (9) Clearly, the 
error rate estimation approach to feature selection 
may lead to exorbitant computation times, particular- 
ly for high-dimensional data. Therefore, even when the 
classifier to be used is already defined, it may be 
interesting to have an independent feature selection 
stage, not based on error counting. 

In other applications it may not be desired to choose 
the classifier in advance and hence the feature selection 
stage has to be carried out independently of the design 
of a classifier. 

When the overall problem at hand is the design of 
a good classifier, class discriminability measures to be 
used in a feature selection procedure should preferably 
give an idea of classifier error rate. The Bayes classifier 
is theoretically the best that could be used and, there- 
fore, an attractive discriminability measure is the 
Bayes error rate. Unfortunately, it is rather awkward 
to use in practice because its estimation by direct 
methods is computationally very intensive (also, the 
distribution of the classes is usually unknown and 
hence the Bayes classifier cannot be designed exactly, 
but only approximated by estimates based on the 
available class samples). There are probabilistic dis- 
criminability measures that provide an upper or lower 
bound for the Bayes error rate for the special case of 
two classes. Examples are the Jeffries-Matusita and 
the Bhattacharyya distance.(6'7),However, the com- 
putational effort for this type of discriminability 
measure is quite considerable, due to the integrals of 
the (usually unknown) probability densities involved. 
An exception is the Gaussian case for which the dis- 
tance expressions are simple, depending only on the 
mean vectors and covariance matrices. However, even 
for the Gaussian case it is not clear how to extend any 
of the known probabilistic discriminability measures 
to the multiclass case. One idea is to define a weighted 
average of any of the two-class measures over all 
pairs of classes; other suggestions may be found in 
references (10, 11). On the other hand, probabilistic 
dependence and information theoretic discriminability 
measures (1°) have the advantage of being defined for 
an arbitrary number of classes. Some of these probabil- 
istic diseriminability measures provide bounds for the 
Bayes error rate, (1 o.11) but their practical usefulness is 
not clear both in terms of theoretical considerations 
(tightness of the bounds, effects of estimation errors) 
and practical implementation. For many, the com- 
putational effort is greater than the direct computation 
of Bayes error rate, while it is not clear in which 
multiclass cases the performance of these discrimina- 
bility measures may parallel that of the Bayes error 

rate measure in a feature selection procedure. To 
decrease the computational effort, other class dis- 
criminability measures have been proposed, such as 
tr(W-1B), where W and B are the within-class and 
between-class scatter matrices, respectively. (6,7) For 
classes with different covariance matrices, W is an 
average within-class scatter matrix. In any case, these 
simpler discriminability measures are even less related 
to the Bayes error rate than those measures based on 
the full probabilistic class description. They are poten- 
tially very useful for practical applications due to their 
computational simplicity, but are expected to work 
properly only when the distributions are unimodal 
with separated sample means. (7) 

The purpose of this paper is to present a class 
discriminability measure for arbitrary distributions 
and any number of classes and that is fast to compute. 
There is no a pr ior i  knowledge required about the 
classes, the measure being based on the available Set of 
random samples from each class. Therefore, the 
measure proposed is directly oriented towards practi- 
cal applications. 

The proposed class discriminability measure is 
based on a data-adaptive partitioning of the feature 
space in such a way that regions having samples from 
two or more classes are more finely partitioned than 
the ones with samples from a single class. After the 
partitioning is over, there will be homogeneous and 
nonhomogeneous "buckets", i.e. approximately hyper- 
cubic subregions with samples from a single class and 
from multiple classes, respectively. The class dis- 
criminability measure proposed is based on the 
samples in the nonhomogeneous buckets. Several tests 
run with Gaussian and non-Gaussian, multidimen- 
sional and multiclass synthetic data indicate that its 
performance parallels that of the criterion of minimiz- 
ing the Bayes error rate. 

The basic concept of the partitioning technique 
employed here is similar to that used in the construc- 

(12 13) tion of declsion tree classifiers, ' but the partition- 
ing obtained here is specific for the objective Of this 
work which is to find a (computer efficient) class 
discriminability measure and not to design a particular 
classifier. Once the partition of the feature space is 
achieved, a class discriminability measure is defined 
based on the samples from regions of the partitioned 
space that have samples from more than one class. 

2. DESCRIPTION OF THE ALGORITHM TO 
COMPUTE THE CLASS DISCRIMINABILITY MEASURE 

The algorithm to compute the class discriminability 
measure proposed in this paper may be subdivided in 
three stages, the first two dealing with the construction 
of the feature space partition and the third dealing with 
the computation of the class discriminability index 
itself. 

Let S be a set containing N vector samples x (n x 1) 
obtained from c classes. The relative frequency of 
samples from any class is an estimate of the a p r io r i  
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class probability. Each vector x of n features represen- 
ting a given pattern has a label indicating to which of 
the c classes it belongs. 

2.1. Feature-space partitioning: splitting a 
subregion in two others 

Initially, the ranges of the samples from S in the 
direction of all n features are determined and a hyper- 
rectangular parallelepiped is constructed such that its 
faces are perpendicular to the feature axes and located 
at the maxima and minima of the samples in each 
feature direction. For  example, let Xlmln and Xlmax be 
the minimum and maximum values obtained from the 
projections of all the samples in S on the direction of 
feature xl. Therefore, the above mentioned hyper-rec- 
tangular parallelepiped will have two faces on the two 
parallel hyperplanes orthogonal to axis x~, passing 
through points Xlmin and X~a~. When this is com- 
pleted for all feature directions, the hyper-rectangular 
parallelepiped faces are defined by the intersection of 
all the hyperplanes. To make the wording shorter, we 
shall term any hyper-rectangular parallelepiped a box. 

A given box at any stage of the partitioning of the 
feature-space is first tested for the stopping conditions 
presented below. Assuming none of the stopping cri- 
teria are satisfied, the box is partitioned into two other 
boxes. The split is performed along the feature that has 
the largest range (in the samples). The starting point for 
the splitting is at a position corresponding to the 
median of the samples projected on that feature coor- 
dinate. The median generates two sample subsets 
around which the two new boxes are built. This split- 
ting rule is almost the same as that proposed by 
reference (12), the difference being that in our method 
the boundaries are always associated with samples. 
The feature-space partitioning is finished when there 
are no remaining boxes to be split, i.e. when all boxes, 
also called terminal boxes, satisfy at least one of the 
stopping criteria listed below. 

2.2. Feature-space partitioning: stopping criteria 

The following stopping criteria were developed for 
the feature-space partitioning algorithm, having in 
mind that the purpose is that of finding an index of 
class discriminability: 

(1) if the box is homogeneous, i.e. it contains 
samples from a single class, 

(2) if the samples in the box are from linearly separ- 
able classes, 

(3) if the number of samples in the box is less than 
N a, where N is the total number of samples in S and 
a=0.375.  

If any criterion is satisfied then the box under analy- 
sis is not split any more. 

The first stopping criterion is rather obvious, since 
our objective is to somehow quantify the degree of 
overlap of the samples from different classes. If seen 
from a Bayes classifier viewpoint, a homogeneous box 

containing samples only from class w i indicates a re- 
gion where the (estimate of the) a posteriori class 
probability is equal to one and hence that region does 
not contribute to the Bayes error rate. 

The second criterion was developed to cover regions 
where the samples from two or more classes are not 
overlapping. These regions would not contribute to 
the Bayes error rate. The usefulness of this second 
criterion is two-fold. In a case where the classes are 
linearly separable with a hyperplane that is not or- 
thogonal to any of the feature axes, there would be 
many box splittings until a stopping criterion could be 
satisfied. This is due to the fact that any splitting in the 
algorithm can only be carried out along a coordinate 
axis. With this second criterion many of these unnec- 
essary box splittings would be avoided. Another case is 
when the classes are separable with nonlinear hyper- 
surfaces. Here, this criterion is expected to be useful in 
smaller boxes, where the corresponding sections of the 
nonlinear boundaries may be approximately linear. In 
order to avoid increasing too much the computational 
effort, a simplified test for linear discriminability was 
chosen, described in the following. Assuming there are 
samples from b classes in a given box, the correspond- 
ing b centroids are found and all the lines joining these 
centroids are formed. The following test is carried out 
for each line: samples in the box are projected onto the 
line and if the projections of samples from each class do 
not overlap with any of the projections of the other 
classes, then the condition of linear discriminability 
along that line is satisfied. The overall linear dis- 
criminability in the box is considered satisfied if it is 
satisfied for all lines. As this is a simplified test, some 
cases of linear discriminability will not be detected and 
in some applications the user may want to apply 
a more rigorous test of linear discriminabili'ty. 

The third stopping criteron is needed to avoid the 
occurrence of very small boxes (e.g. having one, two or 
three samples) at the end of the space partitioning. 
Very small or very large boxes would tend to cause an 
increase in the bias of the class discriminability 
measure defined in section C below. Very large boxes 
would give a large bias, because they usually do not 
carry a fine enough representation of the region where 
there is some overlap between the class samples. At the 
end of the feature-space partition procedure one is left 
with a collection of boxes of different sizes and con- 
tents. If the samples in each box should be able to give 
a reasonable estimate of the a posteriori class probabil-  
ities in the  region within each box (see section C be- 
low), or in other words, the class-conditional 
probability density functions, then one can view this 
problem as rather similar to the probability density 
estimation by the k-nearest neighbor method (k-NN). 
Here the main difficulty is the determination of the 
value of k. Fukunaga and Hostetler 114) derived the 
optimal value of k to be used in k -NN density estima- 
tion but the expression is too complicated tO be used 
for general distributions. Fukunaga and Hummels t15) 
point out the difficulties of using any of the available 
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theoretical values for k when the objective is to obtain 
estimates of the Bayes error rate. Since our class 
discriminability measure is expected to have a relation 
with the Bayes error rate, we are left with the equival- 
ent difficulty of choosing the maximum number of 
samples for a nonhomogeneous not linearly-separable 
terminal box. Fukunaga and Hummels "5) show that 
to select a good value for k it is useful to run many 
experiments with different values for k and observing 
the behavior of the corresponding Bayes error rate 
estimates. Due to these difficulties in the selection of 
a value for k, we chose somewhat arbitrarily the value 
N", with a = 3/8, for the maximum number of samples 
for a nonhomogeneous nonseparable terminal box. 
This relation was suggested by Enas and Choi (~6) as 
being a good value for k in the design of  some k - N N  
classifiers. Also, this value for k is seen to give good 
results when one analyses the experimental results of 
Fukunaga and Hummels (15) for data sets of dimen- 
sions 8 and 60. We think this upper limit for the 
number of samples in a nonhomogeneous terminal 
box will work adequately for many practical cases. 
Perhaps in some specific situations more refined rela- 
tions for k could be employed, including a dependence 
also on the dimension of the space and on the sub- 
region being analysed, as suggested by the theoretical 
work of Fukunaga and Hostetler. 114) 

Summarizing, after the end of the partitioning pro- 
cedure one is left with: 

(i) homogeneous terminal boxes (HTB), 
(ii) nonhomogeneous linearly separable terminal 

boxes (NLSTB) and 
(iii) nonhomogeneous not linearly separable ter- 

minal boxes (NNLSTB) 

2.3. Computation of the class discriminability measure 

The class discriminability measure (CDM) is based 
on the M nonhomogeneous, not linearly-separable 
terminal boxes (NNLSTBs) resulting from the space 
partitioning procedure described in subsections 2.1 
and 2.2. It is defined as: 

1 u 
CDM = ~  ~ {k( i ) -  max [k(jli)]},  

i = l  j 

where k(i) is the total number of samples in the ith 
NNLSTB, k(jJi) is the number of samples from class 
j in the ith NNLSTB and N is the overatl number of 
samples. 

This measure was motivated by a discrete approxi- 
mation to the Bayes error rate E* as seen in the 
following: 

where P(wjlx) is the a posteriori probability of class 
wj, j = 1, . . . ,c  and f~ is the feature space. In approxi- 
mation: 

(a) only the NNLSTB will contribute to the esti- 
mate of E*; 

(b) P(wjlx) ~ k(jl  i)/k(i) for xe i th  NNLSTB; 
(c) dx - AV(x); 

and therefore: 

• [k(i)/(N" AV(x))] • AV(x) 

and finally 

k ( i ) -  max [k(j] i ) ]  = CDM. 
E*=-N i j 

In terms of the algorithm, for each non- 
homogeneous not linearly separable terminal box one 
subtracts the number of samples of the most frequent 
class from the total number of samples in that box. All 
these values are summed and the result is divided by N. 
Actually, as it is difficult to quantify the influence of the 
proposed adaptive feature space partitioning algo- 
rithm in terms of the expression for CDM, this index 
should be seen as potentially useful for the task of 
searching for good features in a p~/ttern recognition 
problem. Perhaps different details in the space par- 
titioning algorithm could lead to closer estimates of 
the Bayes error rate, but that is not the main objective 
of the present paper. 

3. METHODS 

The objective of this work was to find a computa- 
tionally efficient class discriminability measure (CDM) 
that could perform well for problems with arbitrary 
distributions. Therefore, it seemed interesting to com- 
pare the performance of our CDM with the estimates 
of the Bayes error rate and with the trace of W 1B, the 
latter being a popular class discriminability index 
which is fast to compute. As a theoretical approach did 
not seem feasible, all the comparisons were based on 
several computer-simulated data sets covering both 
Gaussian and non-Gaussian cases. 

3.1. Generation of Gaussian sets of  samples 

Multivariate Gaussian (G) sample vectors, with 
given mean vectors and covariance matrices, were 
obtained from Gaussian univariate samples by means 
of standard techniques• Several different cases were 
generated: samples with "reasonable" overlap between 
classes (RO), samples with "little" overlap between 
classes (LO), samples with dimension 4 (4D), samples 
with dimension 5 (5D), samples with dimension 9 (9D), 
samples for 2 classes (2C), samples for 3 classes (3C), 
samples for equal a priori class probabilities (EP) and 
finally, samples for different a priori class probabilities 
(DP). For one specific Gaussian test, 10 sets were 
generated from the same distributions to enable the 
analysis of an average behavior of the three class 
discriminability measures, this being indicated as 
(10x). For  future reference, each set of samples is coded 
using the abbreviations above. For  example, a set of 
Gaussian samples with reasonable overlap, feature- 
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space dimension equal to 4 and having samples from 
3 classes with different a priori probabilities would 
have the code G/RO/4D/3C/DP. A few details from 
each sample set is presented in the following, without 
the inclusion of the corresponding mean vectors and 
covariance matrices due to space limitations. The 
covariance matrices were designed so that the axes of 
the hyper-ellipsoids were not orthogonal to the coordi- 
nate axes and were not parallel for the different classes 
involved. The only difference between the sample sets 
types EP and DP were the number of samples per class; 
the mean vectors and covariance matrices being the 
same. 

Sample set G/LO/4D/2C/EP: there are 1000 
samples per class. 

Sample set G/LO/4D/2C/DP: there are 1000 sam 
ples for class 1 and 3000 samples for class 2, i.e. the 
desired a priori class probabilities are 0.25 and 0.75. 

Sample set G/LO/4D/3C/EP: there are 1000 sam- 
ples per class. 

Sample set G/LO/4D/3C/DP: there are 1000 sam- 
ples for class 1, 1500 samples for class 2 and 500 
samples for class 3, i.e. the a priori class probabilities 
are 0.3333, 0.5 and 0.1667, respectively. 

Sample set G/RO/4D/2C/EP: there are 1000 
samples for each of the two classes. 

Sample set G/RO/4D/2C/DP. there are 1000 sam- 
ples for class 1 and 3000 samples for class 2. 

Sample set G/RO/4D/3C/EP: there are 1000 sam- 
ples for each of the three classes. 

Sample set G/RO/4D/3C/CP: there are 1000 
samples for class 1, 1500 for class 2 and 500 for class 3. 

Sample sets G/RO/4D/3C/DP/IOx: 10 different 
sample sets were generated, each having 1000, 1500 
and 500 samples from classes 1, 2 and 3, respectively, 
following the same distributions used for the previous 
sample set described above. For this purpose, 1900, 
2400 and 1400 samples were initially generated from 
classes 1, 2 and 3, respectively; the first set was formed 
from the first 1000, 1500 and 500 samples from classes 
1, 2 and 3. The second set was formed by ignoring the 
first 100 samples for each class and adding the next 
new 100 samples for each class, and so on. This method 
was chosen for storage economy and to simulate 
a more realistic situation of limited availability of 
samples. 

Sample sets G/LO/9D/2C/EP and G/RO/9D/2C/ 
EP: there are 1000 samples per class, each sample 
being a nine-dimensional vector. 

Sample sets G/LO/9D/2C/DP and G/RO/9D/2C/ 
DP: there are 1000 samples from class 1 and 3000 
samples from class 2. 

Sample sets G/LO/90/3C/EP and G/RO/9D/3C/ 
EP: there are 1000 samples per class. 

Sample sets G/LO/9D/3C/DP and G/RO/9D/3C/ 
DP: there are 1000 samples from class 1, 1500 from 
class 2 and 500 from class 3. 

Sample set G/5D/2C/EP/LVR: as a final set of 
samples, we generated a two-class case in which there 

was a large variance ratio (LVR) for the two classes. 
The space dimensionality was equal to 5, the features 
were statistically independent and the variances of 
class 1 over features 1 to 4 was 3.7 x 10-1 while the 
corresponding variances for class 2 were 3.7 x 10 -2. 
Along feature 5 the variances were equal to 10-1 for 
both classes. The mean for class 1 was at the origin and 
for class 2 was at [0.500.75 1.00 1.25 and 0.50] T. The 
number of samples per class was 1000. 

3.2. Generation of non-Gaussian sets of samples 

Multivariate non-Gaussian (NG) sample vectors 
were generated as follows: along features 1 and 2 the 
samples were Gaussian for class 1 and non-Gaussian 
for class 2, while along the remaining features they 
were jointly Gaussian. Features 1 and 2 were statisti- 
cally independent from the other features. The non- 
Gaussian samples (from class 2) in the direction of 
features 1 and 2 were generated from a mixture of 
r Gaussians, resulting in a multimodal distribution. 
For example, in Fig. 1 the bordering samples are from 
class 2 and are formed by five subclouds, each asso- 
ciated with a different Gaussian distribution. In terms 
of covariance matrices, for the ith subcloud from class 
2 there is an associated overall (n x n) block-diagonal 
covariance matrix Ci2, having a full 2 x 2 and a full 
( n - 2 )  x ( n - 2 )  submatrices in the main diagonal, 
with the remaining terms being zero (representing the 
statistical independence of the first two features from 
the others). Therefore, there are r (n x n) covariance 
matrices Ciz and r mean vectors mi 2 (i = 1,..., r) defin- 
ing the overall statistics of class 2 in n-dimensional 
space, while for class 1 a single (n x n) covariance 
matrix C 1 and a single (n x 1) mean vector m 1 define 
the overall statistics, Two different non-Gaussian cases 
were examined: one which we term a partial surround 
(PS), exemplified in Fig. 1, and another we term a total 
surround (TS), exemplified in Fig. 2. A brief summary 
of the non-Gaussian sample sets generated is given in 
the following. 

Sample set NG/PS/5D/2C/EP: this is a set contain- 
ing five-dimensional samples from two classes, being 
1000 per class. Samples along features 1 and 2 asso- 
ciated with class 1 come from a bivariate Gaussian 
distribution and can be seen in Fig. 1 as the central 
elliptic distribution, centered at the origin. The border- 
ing cloud (hence the name Partial Surround--PS) in 
Fig. 1 is from class 2 and is formed by a mixture of five 
different bivariate Gaussian subclouds, each with 200 
samples. Class 1 and 2 samples along the other features 
are from Gaussians, but independent from those along 
features 1 and 2. 

Sample sets NG/PS/5D/2C/EP/IOx: 10 different 
sample sets were generated, each with 1000 samples 
from each class, following the distributions used in the 
previous sample set above. A similar procedure to that 
already described for G/RO/4D/3C/OP/IOx was em- 
ployed here, where each of the ten sample sets came 
from a superset with 1900 samples from class 1 and 380 
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Fig, 1. Samples from set NG/PS/5D/2C/EP projected on feature coordinates x~ and x 2. 
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Fig. 2. Samples from set NG/TS/5D/2C/DP projected on feature coordinates x I and x 2. 

samples from each of the five Gaussians associated 
with class 2. 

Sample set NG/TS/5D/2C/DP: there are 1000 s a m -  
ples from class 1 and 1600 samples from class 2. Along 
features 1 and 2, the samples from class 1 originate 

from a single Gaussian with mean vector at the origin 
(see Fig. 2). Along the same coordinates, the surround- 
ing annular cloud (hence the name Total  S u r r o u n d - -  
TS) of samples in Fig. 2 arises from eight different 
Gaussian distributions, with 200 samples from each. 



Feature space partitioning 879 

The samples along the remaining coordinates were 
generated independently from those along features 
1 and 2. 

3.3. Evaluation of the new class 
discriminability measure 

For  each set of samples S a feature selection pro- 
cedure was run either for a preselected number  of 
features d (d < n) or for all numbers of features, from 
d = 1 to d = n (see below). For  any given d-dimensional 
feature subset, the following class discriminability 
measures were estimated from the data in S: the Bayes 
error rate, the trace of W -  1B and that presented in this 
work, based on feature space parti t ioning (FSP 
measure, for short). An exhaustive analysis of all d- 
dimensional feature subsets was carried out for each 
d and a ranking of the subsets was obtained according 
to the criterion values, the best subset being associated 
with the lowest values either for the Bayes or FSP  
measures and associated with the highest value for the 
trace measure. In two cases, 10 different sample sets 
were generated from the same distributions and the 
most frequent subset was found (more or less in the 
spirit of Murray t 1 v)) besides the average values for each 
class discriminability measures. 

The Bayes error rate was estimated by counting the 
errors of the optimal Bayes decision rule in classifying 
the data in S. 

The computat ion of t r(W-~B) from the available 
samples was carried out in a straightforward way. The 
corresponding matrices W and B for a given feature 
subset were obtained from the n-dimensional versions 
by adequate selection of rows and columns. Both the 
Bayes and the trace criteria algorithms were imple- 
mented in C + + (GCC compiler). 

The feature-space-partitioning measure was imple- 
mented according to the algorithm described in the 

previous section using C programming language and 
compiler generating tools (Bison and Flex, from Free 
Software Foundation).  All the other programs were 
implemented in C + + language (GCC compiler), with 
s tandard libraries (libg + + )  and were run mostly in 
Silicon Graphics Power Series 480 VGX (with eight 
R3000 processors) and on Sun SparcStation IPC com- 
puters. 

4. E X P E R I M E N T A L  R E S U L T S  

This section will present the results corresponding 
to the several sample sets described in the previous 
section. The three class discriminability measures to be 
compared are the Bayes error rate, the trace of W -  1B 
and that based on feature space part i t ioning (FSP). 
Whenever needed, the three measures will be denoted 
by the short forms Bayes, trace and FSP. 

4.1. Results obtained with Gaussian sets of  samples 

For  sample set G/LO/4D/2C/EP, the feature selec- 
tion procedure was run only for d = 2, i.e. the objective 
was to study the class discriminability measures for all 
the subsets with two features when the available num- 
ber of features was n = 4. The three measures selected 
the pair of features { 1, 4} as the one that gave the best 
class discriminability. Table 1 shows all the feature 
pairs and the corresponding values for the Bayes, trace 
and FSP measures. The ordering of the features was 
the same for all the three measures. 

For  sample set G/LO/4D/2C/DP, the three measures 
again gave feature pair { 1, 4} as the best. Table 2 shows 
that the first four feature pairs were equally ordered in 
the three measures, but  there was an inversion between 
{2, 3} and {2, 4} for the trace and FSP  measures. 

For  sample set G/LO/4D/3C/EP, the best feature 
pair was {1, 2} for all three measures. As a matter  of 

Table 1. Feature subsets and the values of the three class discriminabil- 
ity measures for the sample set G/LO/4D/2C/EP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1, 4 0.0015 1, 4 7.180074 1, 4 0.0165 
2 1, 2 0.0075 1, 2 5.674424 1, 2 0.0290 
3 1, 3 0.0235 1, 3 3.445907 1, 3 0.0950 
4 3, 4 0.0465 3, 4 2.727266 3, 4 0.1810 
5 2, 3 0.0490 2, 3 2.120405 2, 3 0.2430 
6 2, 4 0.0765 2, 4 2.044600 2, 4 0.2815 

Table 2, Feature subsets and the values of the three class discriminability 
measures for the sample set G/LO/4D/2C/DP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1, 4 0.00075 1, 4 9.529667 1, 4 0.00575 
2 1, 2 0.00550 1, 2 6.720351 1, 2 0.01575 
3 1,3 0.02250 1,3 3.479530 1,3 0.07000 
4 3, 4 0.03450 3, 4 2.621752 3, 4 0.10725 
5 2, 3 0.04600 2, 4 1.918607 ° 2, 4 0.15575 
6 2, 4 0.05475 2, 3 1.737918 2, 3 0.17800 
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Table 3. Feature subsets and the values of the three class discriminability 
measures for the sample set G/LO/4D/3C/EP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1, 2 0.01767 1, 2 13.63981 1, 2 0.05567 
2 1, 4 0.02533 1, 4 12.84676 1, 4 0.07000 
3 1,3 0.03400 1,3 8.618266 1,3 0.10933 
4 2, 3 0.05633 2, 3 5.536205 2, 3 0.19533 
5 2, 4 0.09700 3, 4 4.852386 2, 4 0.30300 
6 3,4 0.10233 2,4 4.728407 3,4 0.31000 

Table 4. Feature subsets and the values of the three class discriminability 
measures for the sample set G/LO/4D/3C/DP 

Rank Subset-- Bayes Subset-- Trace Subset-- FSP 

1 1, 2 0.0213 1, 4 16.08054 1, 2 0.0413 
2 1, 4 0.0277 1, 2 14.76135 1, 4 0.0457 
3 1, 3 0.0397 1, 3 8.536114 1, 3 0.1063 
4 2, 3 0.0757 3, 4 5.116483 2, 3 0.2443 
5 2, 4 0.1120 2, 3 4.703231 3, 4 0.2510 
6 3, 4 0.1127 2, 4 4.370039 2, 4 0.2623 

Table 5. Feature subsets and the values of the three class discriminability 
measures for the sample set G/RO/4D/2C/EP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1, 2 0.1295 1, 2 1.277910 1, 2 0.4075 
2 1, 3 0.1655 1, 3 0.972301 1, 3 0.4150 
3. 1, 4 0.1800 1, 4 0.907602 2, 3 0.4615 
4 2, 3 0.1805 2, 3 0.801263 1, 4 0.4900 
5 2, 4 0.1915 2, 4 0.720001 2, 4 0.5445 
6 3, 4 0.2425 3, 4 0.481692 3, 4 0.5705 

fact, all three measures gave the same ordering of 
feature pairs, as shown in Table 3. 

Fo r  sample set G/LO/4D/3C/DP, the best feature 
subset was again { 1, 2} for both the Bayes and FSP,  but  
the trace criterion chose the feature subset {1, 4}. 
Nevertheless, it should be emphasized that  the Bayes 
ranking for these two feature pairs was due to a single 
sample and therefore both pairs for this sample set are 
practically equivalent. The "trace criterion chose the 
pair  {1, 2} as the second best among all the feature 
pairs. Table 4 shows that  the rankings given by both 
the Bayes and FSP  measures coincide up to the four 
best pairs. The fourth pair  for the trace criterion is 
{3, 4}, which is the worst pair  according to the Bayes 
criterion, the difference between it and pair  {2, 3} is 
associated with 111 misclassified samples. The differ- 
ence between pairs {2, 4} and {3, 4} is associated with 
only two misclassified samples. 

Fo r  sample set G/RO/4D/2C/EP, where the samples 
from the two classes were more Overlapped than in the 
first set described in this section, the best feature pair  
was { 1, 2} for all the three criteria, as shown in Table 5. 
Pairs {1, 4} a n d  {2, 3} differ in terms of the Bayes 
criterion by a single misclassified sample and therefore 
are practically equivalent. 

F o r  sample set G/RO/4D/2C/DP, the same ordering 
of feature pairs was achieved by all three criteria (from 
best to worst): {1, 2), {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 
4}. The corresponding sequence of Bayes error  rate 
estimates were: 0.10700, 0.12650, 0.13825, 0.15600, 
0.16875 and 0.17525. 

F o r  sample set G/RO/4D/3C/EP, where the samples 
from three classes had a reasonable  overlap,  the best 
feature pair  for all three criteria was {1, 2}. Table  
6 shows that  for the third best feature pairs both  the 
trace and the F S P  criteria pointed to pair  { 1, 4} instead 
of the pair  {2, 3} indicated by the Bayes criterion. This 
does not  seem bad because the difference between bo th  
pairs is only six misclassified samples, while the differ- 
ence between pairs {1, 2} and {1, 3} is 117 misclassified 
samples. 

Fo r  sample set G/RO/4D/3C/DP, the three criteri~i 
selected as the best feature pair  {1, 2}. Table  7 shows 
the feature subset orderings for d = 1, 2 and 3. F o r  
d = 1 and d --- 3, all three criteria gave the same subset 
ordering. F o r  d = 2, the trace criterion gave a similar 
feature ordering than the Bayes criterion. The F S P  
criterion inverted the second and third best feature 
pairs, which in terms of the Bayes error  estimates differ 
by 37 misclassified samples. I t  is interesting to note 
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Table 6. Feature subsets and the values of the three class discriminability 
measures for the sample set G/RO/4D/3 C/EP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1,2 0.10667 1,2 5.881687 1,2 0.29400 
2 1, 3 0.14567 1, 3 4.770069 1, 3 0.34800 
3 2, 3 0.16233 1, 4 4.061874 1, 4 0.39000 
4 1, 4 0.16433 2, 3 3.771261 2, 3 0.40000 
5 2, 4 0.17933 2, 4 3.210390 2, 4 0.42467 
6 3, 4 0.26833 3, 4 1.991239 3, 4 0.47233 
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Table 7. Featuresubsetsandthevaluesofthethreeclassdiscriminabilitymeasuresfor the 
sample set G/RO/4D/3C/DP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

d = l  
1 1 0.22000 1 2.982694 1 0.44667 
2 2 0.23533 2 2.300813 2 0.47433 
3 3 0.32133 3 1.168982 3 0.51633 
4 4 0.37600 4 0.734204 4 0.55000 

d = 2  
1 1, 2 0.12667 1, 2 5.323766 1, 2 0.27467 
2 1, 3 0.16000 1, 3 4.306004 1, 4 0.36667 
3 1, 4 0.17233 1, 4 3.701928 1, 3 0.37100 
4 2, 3 0.18567 2, 3 3.226132 2, 3 0.42000 
5 2, 4 0.19567 2, 4 2.822457 2, 4 0.43533 
6 3, 4 0.26867 3, 4 1.880330 3, 4 0.46033 

d = 3  
1 1,2,3 0.10133 1,2,3 6.385880 1,2,3 0.25467 
2 1,2,4 0.107~ 1,2,4 5.830955 1,2,4 0.28100 
3 1, 3, 4 0.13567 1, 3, 4 5.000775 1, 3, 4 0.35067 
4 2, 3, 4 0.16600 2, 3, 4 3.740582 2, 3, 4 0.39733 

d = 4  
1 1, 2, 3, 4 0.09133 1, 2, 3, 4 6.885136 1, 2, 3, 4 0.23900 

that on passing from the best pair to the second, the 
Bayes index increased by 26.3%, while the FSP in- 
creased by 33.5%. On the other hand on passing from 
the second to the third best respective feature pairs, the 
Bayes index increased by 7 .70  while the FSP  in- 
creased by 1.2°,/o i.e. both criteria indicated clearly the 
almost equivalence of pairs {1, 3} and {1, 4}. Table 
7 also shows that the three class discriminability 
measures showed a monotonic  behavior for increasing 
numbers  of features when for each d the corresponding 
best subset was taken. Another  interesting observation 
is that, in this example, the best feature subsets for each 
value of d are nested. 

For  sample sets G/RO/4D/3C/DP/IOx, the average 
values for each of the class discriminability measures 
were obtained from the 10 sample sets. The same 
qualitative results were obtained as those shown in 
Table 7 (e.g. the same feature subset sequence for each 
criterion, nesting of features) and, therefore, will not  be 
presented. Also, for each d and for each criterion, the 
best ranked feature subsets were the same for each of 
the 10 individual sample sets. These results suggest 
that the findings are robust. 

For  sample set G/LO/9D/2C/EP, the objective was 
to find the best subset with d = 4 features from the 
original set of n = 9  features. The results are syn- 
thesized in Table 8, where the 10 best feature subsets 
are indicated for each of the three criteria. The three 
criteria indicated the same feature subset {1, 5, 7, 9} as 
being the best among all four-tuples of features. It 
should be added that, at least for the Bayes and FSP  
criteria, this choice was robust  in the sense that the 
percentage increase of the Bayes and FSP  measures 
from the first to the second feature subsets was large. 
As to the 10 best subsets indicated by the Bayes 
criterion, seven were also indicated by the FSP  cri- 
terion and nine by the trace criterion (but in different 
ordering) among their respective 10 best subsets. 

For  sample set G/LO/9D/2C/DP, again the objective 
was to select the best subset with d = 4 features. Table 
9 shows that both the Bayes and the F S P  criterion 
indicated the subset {1, 5, 7, 9} as the best while this 
same subset was ranked fifth by the trace criterion. The 
best subset for the trace criterion was ranked sixth by 
the Bayes criterion. Here it is clear that the trace 
criterion did not  work properly, while the FSP  did. As 
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Table 8. Feature subsets and the values of the three class discriminability measures for the 
sample set G/LO/9D/2C/EP 

Rank Subset Bayes Subset--Trace Subset--FSP 

l 1, 5, 7, 9 0.0040 1, 5, 7, 9 6.22778 1, 5, 7, 9 0.0080 
2 1, 3, 5, 9 0.0055 1, 2, 7, 9 5.850402 1, 3, 7, 9 0.0290 
3 3, 5, 7, 9 0.0065 l, 3, 5, 9 5.8:21537 1, 2, 4, 7 0.0420 
4 1, 3, 7, 9 0.0075 1, 4, 5, 9 5.518858 1, 3, 4, 9 0.0425 
5 1,5,6,9 0.0080 3,5,7,9 5 .117251  1,3,4,7 0.0435 
6 1, 4, 5, 9 0.0095 1, 4, 7, 9 4.979232 l, 3, 5, 9 0.0520 
7 1, 4, 7, 9 0.0095 3, 4, 7, 9 4.913938 l, 4, 7, 9 0.0550 
8 3, 4, 7, 9 0.0095 1, 2, 4, 5 4.747062 1, 2, 4, 5 0.0560 
9 1, 2, 4, 7 0.0110 1, 3, 4, 9 4.654403 1, 5, 6, 9 0.0625 

10 1,2,4,5 0.0115 1,2,4,7 4.578616 1,2,5,9 0.0650 

Table 9. Feature subsets and the values of the three class discriminability measures for the 
sample set G/LO/9D/2C/DP 

Rank Subset Bayes Subset--Trace Subset--FSP 

1 1, 5, 7, 9 0.00325 1, 4, 5, 9 6.451560 1, 5, 7, 9 0.02300 
2 1, 3, 7, 9 0.00500 1, 3, 5, 9 6.441597 1, 4, 5, 9 0.02950 
3 1, 3, 5, 9 0.00525 1, 3, 7, 9 6.005819 1, 5, 6, 9 0.03275 
4 3, 5, 7, 9 0.00575 3, 4, 7, 9 5.978488 1, 3, 5, 9 0.03350 
5 3, 4, 7, 9 0.00675 1, 5, 7, 9 5.619694 1, 3, 7, 9 0.03350 
6 1, 4, 5, 9 0.00750 3, 5, 7, 9 5.551622 4, 5, 7, 9 0.03625 
7 1, 2, 4, 7 0.00875 1, 3, 4, 9 5.001707 3, 5, 7, 9 0.03725 
8 1, 4, 7, 9 0.00875 3, 6, 7, 9 4.896725 1, 3, 4, 9 0.03800 
9 1,3,4,7 0 . 0 0 9 2 5  3,7,8,9 4 .876851  1,2,5,9 0.04175 

i0 l, 4, 5, 7 0.00950 2, 3, 7, 9 4.860629 1, 2, 4, 7 0.04250 

Table 10. Feature subsets and the values of the three class discriminability measures for 
the sample set G/LO/9D/3 C/EP 

Rank Subset--Bayes Subset--Trace Subset-- FSP 

1 1, 2, 4, 5 0.01633 1, 2, 4, 5 10.34657 1, 2, 4, 5 0.06200 
2 1, 2, 5, 6 0.01767 1, 5, 7, 9 10.12569 1, ;2, 5, 9 0.08100 
3 1, 2, 5, 9 0.02233 1, 2, 5, 9 10.03391 1, 2, 5, 6 0.08433 
4 2, 4, 5, 8 0.03233 1, 2, 5, 7 8.795321 2, 3, 5, 9 0.09700 
5 2,4,5,7 0 . 0 3 2 6 7  1,2,5,6 8.767937 2,4,5,8 0.10067 
6 1, 2, 3, 5 0.03400 1, 2, 3, 5 8.626267 2, 4, 5, 9 0.10467 
7 1,2,5,7 0 . 0 3 4 3 3  1,2,5,8 8 .305842  2,4,5,7 0.10633 
8 2,4,5,6 0 . 0 3 4 3 3  1,4,5,9 8 .055298  1,4,5,9 0.11533 
9 2,4,5,9 0 . 0 3 4 6 7  1,3,7,9 7 .667932  2,4,5,6 0.11700 

10 2,3,4,5 0.03500 2,5,7,9 7 .574672  1,2,5,7 0.11900 

to the 10 best subsets indicated by the Bayes criterion, 
six were also indicated by the FSP and trace criteria 
(with different ranking) among their best 10 subsets. 

For  sample set G/LO/9D/3C/EP, the three criteria 
indicated the same subset {1, 2, 4, 5} as the best among 
all feature subsets with cardinality 4. Table 10 shows 
that among the best five subsets indicated by the Bayes 
criterion four (three) were also indicated by the FSP  
(trace) criterion. Among the 10 best Bayes subsets the 
FSP indicated eight and the trace only five. In this test 
the subset {1, 2, 4, 5} (chosen by all three criteria as the 
best) was only slightly better (four samples difference) 
than subset { 1,2, 5, 6} according to the Bayes criterion. 

For  sample set G/LO/9D/3C/DP, the Bayes and FSP 
criteria indicated { 1, 2, 4, 5} as the best subset with four 

features, while the trace criterion indicated the subset 
{1, 5, 7, 9}. Surprisingly, the latter is not  included 
among the best 10 subsets indicated by the Bayes 
criterion. 

For  sample set G/RO/9D/2C/EP, where the classes 
were a little more overlapped, Table 11 shows that the 
three criteria indicated the same optimal subset { 1, 2, 4, 
6}. Among the best five subsets indicated by the trace 
and the FSP criteria, three subsets are included among 
the first five indicated by the Bayes criterion. Seven 
(six) subsets among the best 10 indicated by the trace 
(FSP) criteria are included among the best subsets 
indicated by the Bayes criterion. Again in this test the 
best quadruplet  { 1, 2, 4, 6} is only a few samples (5) 
better than the next according to the Bayes criterion. 
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Table 11. Feature subsets and the values of the three class discriminability measures for 
the sample set G/RO/9D/2C/EP 

Rank Subset--Bayes Subset--Trace Subset FSP 

1 1, 2, 4, 6 0.0395 i, 2, 4, 6 3.238273 1, 2, 4, 6 0.1600 
2 1, 2, 3, 4 0.0420 1, 2, 3, 4 2.897928 1, 2, 3, 5 0.1710 
3 1, 2, 4, 9 0.0495 1, 3, 4, 6 2.844463 1, 2, 3, 4 0.1715 
4 1, 3, 4, 6 0.0505 2, 3, 4, 6 2.671908 1, 2, 4, 9 0.1715 
5 1, 3, 4, 8 0.0505 1, 2, 3, 6 2.652638 1, 2, 4, 5 0.1745 
6 2, 4, 6, 7 0.0505 2, 4, 6, 7 2.645448 I, 4, 5, 6 0.1810 
7 2, 3, 4, 6 0.0515 1, 2, 4, 8 2.616946 1, 4, 6, 9 0.1860 
8 1, 2, 4, 5 0.0520 1, 3, 4, 8 2.616763 1, 3, 4, 9 0.1925 
9 2, 4, 6, 9 0.0530 2, 4, 6, 8 2.587327 1, 2, 4, 7 0.1930 

10 1,3,4,9 0.0545 2,4,6,9 2 .566807  1,3,4,8 0.1960 
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Table 12. Feature subsets and the values of the three class discriminability measures for 
the sample set G/RO/9D/2C/DP 

Rank Subset Bayes Subset--Trace Subset--FSP 

1 1, 2, 4, 6 0.03125 1, 2, 4, 6 3.265063 1, 2, 4, 6 0.13675 
2 2, 4, 6, 7 0.03950 2, 4, 6, 7 2.837815 1, 2, 4, 9 0.13875 
3 1, 2, 3, 4 0.04075 2, 4, 6, 8 2.753324 2, 4, 6, 9 0.13875 
4 Z 3,4,6 0.04225 1,2,3,4 2 .681162  2,4,6,7 0.14125 
5 2, 4, 6, 8 0.04325 2, 3, 4, 6 2.679840 2, 4, 6, 8 0.14200 
6 1, 3, 4, 6 0.04350 2, 4, 6, 9 2.677656 1, 2, 3, 4 0.14700 
7 2, 4, 5, 6 0.04425 2, 4, 5, 6 2.619490 1, 2, 5, 6 0.14775 
8 2,4,6,9 0.04525 1,2,4,8 2.598846 1,2,4,5 0.14925 
9 1, 2, 4, 9 0.04575 1, 2, 4, 9 2.567216 1, 2, 6, 7 0.14975 

10 1, 2, 4, 5 0.04650 1, 2, 4, 5 2.557409 1, 2, 4, 7 0.15025 

For  sample set G/RO/9D/2C/DP, the three criteria 
selected the feature subset { 1, 2, 4, 6} as the best among 
all subsets with four features. Table 12 shows that five 
(three) subsets indicated by the trace (FSP) criterion 
among its first five were also indicated by the Bayes 
criterion, although with a different ranking. Among 
the best 10 subsets indicated by the trace (FSP) cri- 
terion, nine (seven) also belong to the list of the 10 best 
subsets indicated by the Bayes criterion. 

For  sample set G/RO/9D/3C/EP, the subset {1, 2, 4, 
6) was indicated as the best subset with four features by 
the three criteria. Among the best I0 subsets indicated 
by the Bayes criterion, the trace (FSP) criterion in- 
dicated eight (seven) among its list of 10 best subsets. 

For  sample set G/RO/9D/3C/DP, again subset {1, 2, 
4, 6) was indicated by the three criteria as being the 
best among all subsets with cardinality four. Five 
(three) among the first five best subsets according to 
the trace (FSP) criterion were among the best five 
subsets according to the Bayes criterion. Seven (six) 
among the best 10 subsets indicated by the trace (FSP) 
criterion are among the best 10 indicated by the Bayes 
criterion. 

For  sample set G/5D/2C/EP/LVR, the best pair of 
features for the Bayes and the FSP criteria was {3, 4), 
with values 0.0145 and 0.0270. The second and third 
best subsets for the Bayes were {2, 4) and { 1, 4), with 
values 0.0205 and 0.0230, i.e. differing between them by 
only five misclassified samples. These same two subsets 

were the third and second best, respectively, for the 
FSP criterion, with values 0.0495 and 0.0470. 

4.2. Results obtained with non-Gaussian sets of samples 

For sample set NG/PS/5D/2C/EP, the two classes 
were non-Gauss ian  along features 1 and 2, as seen in 
Fig. 1, with samples from class 2 partially surrounding 
those from class 1. Along other coordinates the dis- 
tributions were Gaussian. The feature selection pro- 
cedure was run for all numbers  of features d, using the 
three class discriminability measures. Table 13 sum- 
marizes the findings. 

For  the single feature search the Bayes criterion 
indicated features {3) and {4} as being the best and 
second best, respectively, while the FSP criterion chose 
them in reverse order, i.e. feature {4) as being the best. 
Nevertheless, as features {3) and {4) differ in terms of 
the Bayes index by only 16 misclassified samples out of 
2000 while along feature {3) there were 422 misclassi- 
fled samples, it seems that the two features are practi- 
cally equivalent in terms of class discriminability. The 
trace criterion indicated the correct best feature {3), 
but indicated feature {5) as the second best. 

Table 13 shows the results for the search of the pairs 
of features, indicating that the best subset according to 
the Bayes criterion, { 1, 2), was also the best according 
to the FSP criterion, but it was the worst pair accord- 
ing to the trace criterion. The estimates of the Bayes 
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Table 13. Feature subsets and the values of the three class discriminability measures for 
the sample set NG/PS/5D/2C/EP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

d = l  
1 3 0.2110 3 0.500938 4 0.6205 
2 4 0.2190 5 0.489283 3 0.6775 
3 5 0.2290 4 0.056039 5 0.6835 
4 2 0.2590 1 0.011594 1 0.6870 
5 1 0.2935 2 0.008052 2 0.6910 

d = 2  
1 1, 2 0.0270 3, 4 1.048146 1, 2 0.1490 
2 3, 4 0.0720 4, 5 0.979414 3, 4 0.3275 
3 4, 5 0.0865 1, 5 0.739464 4, 5 0.4030 
4 1, 4 0.1250 1, 3 0.730588 1, 4 0.5020 
5 2, 3 0.1325 3, 5 0.622067 1, 3 0.5115 
6 1, 5 0.1370 2, 3 0.605914 1, 5 0.5140 
7 2, 4 0.1395 2, 5 0.588242 2, 3 0.5345 
8 2, 5 0.1395 1, 4 0.057185 2, 5 0.5590 
9 1, 3 0.1475 2, 4 0.056042 2, 4 0.5880 

10 3, 5 0.1865 1, 2 0.012952 3, 5 0.6400 

d = 3  
1 1,2,4 0.0115 3,4,5 1.393755 1,2,4 0.1170 
2 1, 2, 3 0.0200 1, 3, 4 1.214799 l, 2, 5 0.1475 
3 1, 2, 5 0.0220 1, 4, 5 1.167876 1, 2, 3 0.1705 
4 2, 3, 4 0.0365 2, 3, 4 1.064226 1, 4, 5 0.1735 
5 2, 4, 5 0.0390 2, 4, 5 0.994330 2, 4, 5 0.1965 
6 1, 4, 5 0.0475 1, 3, 5 0.988816 l, 3, 4 0.2050 
7 1,3,4 0.0495 2,3,5 0.768057 2,3,4 0.2110 
8 3, 4, 5 0.0640 1, 2, 5 0.746557 3, 4, 5 0.3305 
9 2,3,5 0.1160 1,2,3 0.742059 1,3,5 0.4145 

10 1,3,5 0.1170 1,2,4 0.057614 2,3,5 0.4695 

d = 4  
1 1, 2, 3, 4 0.0055 1, 3, 4, 5 1.743554 1, 2, 4, 5 0.0800 
2 1,2,4,5 0.0075 2,3,4,5 1.424391 1,2,3,4 0.1125 
3 1, 2, 3, 5 0.0170 1, 2, 3, 4 1.220483 2, 3, 4, 5 0.1660 
4 2,3,4,5 0.0275 1,2,4,5 1.177042 1,2,3,5 0.1665 
5 1,3,4,5 0.0330 1,2,3,5 1.002338 1,3,4,5 0.1730 

d = 5  
1 1, 2, 3, 4, 5 0.0050 1, 2, 3, 4, 5 1.757253 1, 2, 3, 4, 5 0.0980 

error rates for the pairs (1, 2} and (3, 4} were 2.70 and 
7.20%, the difference being associated with 90 misclas- 
sifted samples, suggesting that the choice of the pair { 1, 
2} is robust. Figure 1 shows the samples projected on 
these coordinates. Pair {3, 4} was selected by the trace 
criterion as the best among all feature pairs. Finally, 
among the best five pairs of features indicated by the 
FSP (trace) criterion, four (two) were among the first 
five pairs ranked by the Bayes criterion. 

The search for the best triplet of features resulted in 
the selection of subset { 1, 2, 4} by both the Bayes and 
FSP criteria, while the trace criterion selected subset 
{3, 4, 5}, which is the eighth ranked by the Bayes index. 
Among the five best ranked feature subsets for the FSP  
(trace) criterion, four (two) were among the five best 
indicated by the Bayes criterion. 

The feature selection procedure using the Bayes 
criterion indicated subset {1, 2, 3, 4} as the best among 
the five possible combinat ions of four features. The 
FSP criterion indicated the subset {1, 2, 4, 5}, which is 
the second best subset accordin'g to the Bayes error 

measure, being associated with only four additional 
misclassified samples when compared with the Bayes 
best subset {1, 2, 3, 4}. The second-ranked subset 
according to the FSP criterion is the best indicated by 
the Bayes. On the other hand, the trace criterion 
selected the subset {1, 3, 4, 5}, which is the worst 
according to the Bayes criterion, being associated with 
61 additional misclassified samples when compared to 
the subset { 1, 2, 3, 4}. 

Two additional observations can be made on the 
results of Table 13. One is that for the Bayes and FSP  
criteria there was no nesting of attributes when d was 
increased from i to 5. This is an impor tant  observation 
in terms of the choice of feature selection search pro- 
cedures. '16) Another  aspect is that for the Bayes and 
trace criteria there was monotonici ty  in the respective 
class discriminability measure values when d was in- 
creased from 1 to 5 and the best subset was chosen for 
each d. For  the FSP  measure there was a (slight) break 
in the monotonici ty  on passing from three to four and 
then to five features (0.1170 to 0.0800 to 0.098). This 
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Table 14. Feature subsets and the values of the three class discriminability measures for 
the sample set NG/PS/5D/2C/EP/IOx 

Rank Subset--Bayes Subset--Trace Subset--FSP 

d = l  
1 4 0.2123 3 0.478699 4 0.6498 
2 3 0.2181 5 0.450200 3 0.6775 
3 5 0.2345 4 0.060381 1 0.6895 
4 2 0.2506 1 0.008814 5 0.6900 
5 1 0.2957 2 0.005379 2 0.6930 

d = 2  
1 1, 2 0.0291 3, 4 1.019153 1, 2 0.1470 
2 3, 4 0.0711 4, 5 0.936467 3, 4 0.3250 
3 4, 5 0.0897 1, 3 0.639107 4, 5 0.4065 
4 1, 4 0.1207 1, 5 0.615236 1, 4 0.4680 
5 2, 3 0.1332 3, 5 0.583945 1, 5 0.5125 
6 2, 4 0.1380 2, 3 0.576764 2, 3 0.5185 
7 2, 5 0.1401 2, 5 0.537873 1, 3 0.5370 
8 1, 5 0.1432 2, 4 0.060594 2, 4 0.5470 
9 1, 3 0.1534 1, 4 0.055081 2, 5 0.5475 

10 3, 5 0.1894 1, 2 0.009559 3, 5 0.6345 

d = 3  
1 1,2,4 0.0122 3,4,5 1.342712 1,2,4 0.1105 
2 1, 2, 3 0.0212 1, 3, 4 1.195138 1, 2, 5 0.1430 
3 1, 2, 5 0.0226 1, 4, 5 1.128206 1, 4, 5 0.1570 
4 2,3,4 0.0334 2,3,4 1.037295 1,2,3 0.1650 
5 2, 4, 5 0.0387 2, 4, 5 0.950745 2, 3, 4 0.1760 
6 1, 3, 4 0.0445 1, 3, 5 0.932925 2, 4, 5 0.1800 
7 1, 4, 5 0.0486 2, 3, 5 0.719692 1, 3, 4 0.2105 
8 3, 4, 5 0.0655 1, 2, 3 0.709955 3, 4, 5 0.3315 
9 2, 3, 5 0.1111 1, 2, 5 0.686433 1, 3, 5 0.4420 

10 1,3,5 0.1198 1,2,4 0.061812 2,3,5 0.4470 

d = 4  
1 1, 2, 3, 4 0.0065 1, 3, 4, 5 1.713666 1, 2, 4, 5 0.0925 
2 1,2,4,5 0 . 0 0 7 7  2,3,4,5 1.377449 1,2,3,4 0.1040 
3 1, 2, 3, 5 0.0175 1, 2, 3, 4 1.199954 1, 3, 4, 5 0.1445 
4 2, 3, 4, 5 0.0252 1, 2, 4, 5 1.134706 2, 3, 4, 5 0.1535 
5 1, 3, 4, 5 0.0325 1, 2, 3, 5 0.946600 1, 2, 3, 5 0.1645 

d = 5  
1 1, 2, 3, 4, 5 0.0042 1, 2, 3, 4, 5 1.725232 1, 2, 3, 4, 5 0.0920 
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does not seem worrisome because the Bayes index for 
the case of four features was 0.0055 and that for five 
features was 0.0050, i.e. a difference of a single misclas- 
sifted sample. In other words, in this example it will not 
make too much of a difference if you use four or five 
features in your classifier. 

For  sample sets NG/PS/5D/2C/EP/IOx, the average 
values for the three class discriminability measures 
were computed from the 10 sample sets. Table 14 
shows that the results were reasonably similar to those 
found for a single sample set (Table 13), even though 
there were a few different rankings of feature subsets. 
Another difference was that the small loss of mono-  
tonicity for the FSP found in the previous case (see 
Table 13) did not happen here. The values of the three 
criteria varied monotonically for the best feature sub- 
sets when d varied from 1 to 5 (even though the FSP  
values for the best subset of four features and for the set 
of five features were practically equal). Finally, for each 
of the ten sample sets (not shown), the same optimal 
subsets were always obtained for each d and each 

criterion. For  example, for criterion FSP, the optimal 
subset with two features was found to be { 1, 2} for each 
of the 10 sample sets. These results suggest that the 
findings are robust. 

For  sample set NG/TS/5D/2C/DP, along features { 1, 
2} the samples from class 2 totally surrounded those 
from sample 1, as seen in Fig. 2. The feature selection 
procedure was run only for d = 2, with Table 15 sum- 
marizing the results obtained. Both the Bayes and  the 
FSP  criteria indicated { 1, 2} as the best pair among the 
10 possible pairs of features. On  the other hand the 
trace criterion indicated {4, 5} as the best, which was 
ranked as the third by Bayes and with a quite higher 
error rate estimate (13.3% compared with 7.3%). The 
best four pairs selected by the FSP  were among the five 
best from the Bayes criterion. 

A short remark should be made on the selection of 
the parameter a in the expression N a, used in the third 
stopping criterion of the feature space parti t ioning 
procedure. The results presented here all used 
a=0 .375 ,  which showed a good feature selection 
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Table 15. Feature subsets and the values of the three class discriminability measures for 
the sample set NG/TS/5D/2C/DP 

Rank Subset--Bayes Subset--Trace Subset--FSP 

1 1, 2 0.07308 4, 5 0.028801 1, 2 0.14462 
2 1, 5 0.12846 1, 5 0.021860 1, 5 0.31923 
3 4, 5 0.13269 3, 5 0.021114 2, 5 0.33654 
4 2, 5 0.14077 2, 5 0.020007 4, 5 0.34115 
5 2, 4 0.15115 3, 4 0.000503 3, 5 0.37846 
6 3, 5 0.16308 1, 4 0.000468 2, 4 0.38038 
7 !, 4 0.16692 2, 4 0.000465 1, 4 0.42500 
8 2,3 0.22154 1,3 0.000030 2,3 0.47385 
9 3, 4 0.22846 2, 3 0.000026 1, 3 0.50115 

10 1, 3 0.23192 1, 2 0.000024 3, 4 0.50962 

performance for the data sets used in the present work. 
Smaller values for a ter!ded to give FSP  measures 
closer to the estimated Bayes error rates, but too small 
values (e.g. 0.200) sometimes made the optimal feature 
subset choice to be in error. A value which tended to 
give good results, and better approximations to the 
Bayes error rate, was a = 0.250, except for the cases 
where the superposition of the classes was small. 

4.3. A comparison of computation times 

Processing times for the evaluation of all feature 
pairs for the non-Gaussian, total surround, five- 
dimensional feature space sample set (NG/TS/5D/ 
2C/DP) were obtained for three computers: an IBM- 
PC 486-compatible (33 MHz, 8 Mb RAM), a Sun 
SPARC station IPC with 12 Mb RAM and a Silicon 
Graphics Power Series 480 VGX (eight processors 
R3000, 256 Mb total memory, 8 kb of cache memory 
for instructions per processor, 1 Mb of total cache per 
processor). The same compiler was used in all ma- 
chines (GCC 2.5.7 from Free Software Foundation). 
None of the programs developed to compute  the three 
criteria were optimized with respect to computat ion 
time. Table 16 shows the results obtained, where it can 
be concluded that the FSP measure was about  two 
times slower than the trace measure, but at least 13 
times faster than the Bayes measure. Nevertheless, it 
must be emphasized that the Bayes measure employed 
here assumed all the distributions known a priori and 
hence each classifier could be designed a priori. In 
a more practical case one would have to estimate 
probability density functions from the available data 

Table 16. Computation times for the three class discrimin- 
ability measures for the case NG/TS/5D/2C/DP 

Sun 
Silicon SPARC 

Graphics station IBM-PC 

Trace 4.3 s 28.3 s 3 min 
FSP 7.8s 66.2s 5min 
Bayes 5 rain 15 min N.A. 

samples before counting the errors to estimate the 
error rate. Obviously in this more realistic setting the 
processing times for the Bayes measure would be 
prohibitive. As the trace and FSP  were implemented 
based totally on the available samples, the correspond- 
ing computa t ion  times are of practical relevance. 

5. CONCLUSION 

This paper proposes a class discriminability 
measure defined by sample counts on the part i t ioned 
feature space (FSP measure). Its performance in a fea- 
ture selection procedure was compared with that of the 
estimated Bayes error rate and also the trace of W -  lB. 
The former was used as the "golden standard" for the 
evaluation of the feature selection per se and the latter 
was used as a reference for the computat ional  effi- 
ciency. 

Several tests (more than 20 are presented here) were 
run with controlled artificial data in an effort to cover 
many different and relevant situations. The analyses of 
the results showed that the FSP  measure behaved 
practically as well as the Bayes index, but with a much 
higher computa t ion  efficiency. 

The main results and conclusions of this work are: 

(a) For  practically all experimental tests employed 
in this work the optimal feature subsets indicated by 
the FSP  measure were the same as those given by the 
Bayes index (rank 1 in all the tables). On  the other  
hand, the trace of W -  1B gave very poor  results for the 
non-Gaussian cases analysed and was slightly inferior 
to the F S P  for the Gaussian cases. 

(b) For  two cases (Gaussian and non-Gaussian data  
sets) the robustness of the FSP-based method was 
confirmed by running the feature selection procedure 
for 10 sample sets obtained from the same probabili ty 
density functions. 

(c) One test was run to give an idea of the resolution 
of the FSP  measure. The variance of one class was 10 
times that of the other  and the FSP index was also able 
to indicate the optimal feature subset. 

(d) The computat ional  efficiency of the feature se- 
lection procedure with the FSP  measure was at least an 
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order of magnitude better than with the Bayes measure 
and only about  twice worse than with the trace 
measure. It is important  to emphasize that the Bayes 
computat ion times were "small" because we used 
a priori knowledge about  the class distributions and 
hence the optimal classifier was determined indepen- 
dent of the data samples. On  the other hand, if non- 
parametric estimates of the Bayes measure (or other 
measure involving probabili ty density functions) 
based on, e.g. kernel or nearest-neighbors would be 
employed in a practical feature selection problem, the 
involved computat ional  times would probably be pro- 
hibitive, many orders of magnitude larger than those 
obtained here. It should be emphasized that with a fast 
and good performance class discriminability measure 
an exhaustive feature subset search could be feasible in 
many real life problems thereby avoiding the pitfalls of 
suboptimal search strategies. 

There are many suggestions one could make in an 
effort to improve the algorithms, both in terms of 
processing time and class discriminability perform- 
ance. For  example, a- t r immed means could be used 
instead of medians; the choice of the next feature for 
box parti t ioning could use class information and not 
only spread of the samples; a more refined test for 
linear separability could be employed; the third stop- 
ping criterion in the space parti t ioning could depend 
not only on the total number  of samples, but also on 
the space dimensionality and perhaps on local condi- 
tions. 
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