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Technical note

Phase distortion in biological signal
analysis caused by linear phase FIR
filters
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Laboratério de Engenharia Biomédica, EPUSP, DEE, Caixa Posta 8174, Sao Paulo SP, Brasil

Keywords—FIR digital filters, Phase distortion, Real-time digital filtering

1 Introduction

DIGITAL SIGNAL processing techniques have found wide-
spread applications in the biomedical field. In particular
digital filtering has been commonly used in many areas of
biomedicine such as cardiology (PaN and TOMPKINS, 1985),
neurology (FRIDMAN et al., 1982), otology (ENGELKEN et al.,
1982), neurophysiology (WHEELER and VALESANO, 1985).
Digital filters have been implemented either in hardware
(ScHLUTER, 1981) or as software routines for a general-
purpose computer (CERUTTI et al., 1985). Hardware imple-
mentations are usually intended for real-time operation.

In biomedical applications a special emphasis is given to
finite duration impulse response (FIR) filters. They are pre-
ferred over the infinite impulse response filters (IIR)
because they can be designed to have a linear phase
response. This property is specially important in the filter-
ing of the pulse-like signals which are commonplace in
biomedicine. However, many linear phase FIR filters
reported in the literature are not true linear phase filters
because their phase responses exhibit jumps between linear
segments. When phase discontinuities occur in FIR filters
with a small number of coefficients, distortions in the
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output waveform may occur. These short duration FIR
filters are being used in real-time biomedical signal pro-
cessing systems such as cardiac arrhythmia monitors
(SCHLUTER, 1981; Pan and ToMPKINS, 1985),

This note shows how and when linear phase FIR filters
may introduce phase distortions. Two popular FIR filter
design methods are extended to cover true linear phase
filters. Some examples compare the characteristics and the
behaviour of linear phase and true linear phase filters.

2 Linear phase and true linear phase FIR filters

There are two kinds of linear phase FIR filters: those
with an even-symmetric impulse response and those with
an odd-symmetric impulse response. The first kind is the
most important in biomedical applications and is well
suited for the design of low-pass, high-pass, bandpass and
bandstop filters. The second kind is characterised by a n/2
term in the phase response and is therefore more suited to
the design of differentiators and Hilbert transformers.

The unit sample response or impulse response of a FIR
filter will be denoted h(L), h(L + 1), ..., h(L + N — 1),
where L and N are integers and h( - ) is real. N is the
duration of the impulse response. Two cases will be dis-
cussed: L = 0 for a causal system and L = — (N — 1)/2 (N
odd) or L = —N/2 (N even) for a noncausal system.
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2.1 Property I
(RABINER and GoLD, 1975; CAPPELLINI et al., 1978)

If the impulse response of a causal FIR filter has even
symmetry with respect to the abscissa (N — 1)/2 then its
frequency response may be written as:

H(e’®) = R(e'*)e 42 (1)

where R(e®) is a real function of o, usually different from
| H(e™)|,

a=(N-—1)2

Owing to the apparent phase linearity —aw, a filter that
has a frequency response given by eqn. 1 is called a linear

|Htek2) |, R (ek2) aq[meiw)]
5 T

| Hiel @) |=p(elw)
5

where P(e’®) is a non-negative real function of w with
P(e’”) = | H(e")|

a=(N—-1)2

The phase response is continuous and linear for w € ( — m,
m) (see Fig. 1b). Therefore, only true linear phase FIR filters
can be guaranteed to introduce no phase distortion in low-
pass, high-pass, bandpass and bandstop filters.

The extension of Property | to noncausal filters is
straightforward and expr. 1 results with & = 0 (CAPPELLINI
et al., 1978). It should be emphasised that the resulting
filter is not, in general, a zero phase FIR filter. Its phase
response will switch between zero and n whenever R(e’®)

arg [H{ej“‘)]

111

Fig. 1 (a) Causal linear phase FIR filter with

transfer function H(z)=1+z"'+2z7 %+

phase filter. However, it should be stressed that whenever
R(e’?) changes sign the phase response has a jump discon-
tinuity of size n. This means that the phase response is
piecewise linear with as many jumps of n as the number of
zero crossings in R(e’®) (see Fig. 1a). This type of discontin-
uous phase response is quite different from the ideal linear
phase characteristics.

A subset of the set of linear phase FIR filters with an
even-symmetric impulse response can be defined as
follows:

Definition
A causal true linear phase FIR filter has a frequency
response given by

H(e’®) = P(e/®)e ™ (2)
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z73+z74=(1-2z"%)/(1—-2z""); (b)
causal true linear phase FIR filter; (c)
noncausal linear phase FIR filter with
transfer  function H(z)=z*+z+1
+2z '+ 2% (d) noncausal true linear
phase FIR filter or zero phase filter;
{e) input signal x(n)=sin (2nn/l10)
+ sin (6mn/10) to the filters; (f) output
signal from the causal linear phase filter;
(g) output signal from the causal true
linear phase filter. In (a), (b), (c) and
(d) the solid line is |H(e’*)| (the same
in all figures) and the broken line is the
phase response. In (a) the dotted line
indicates where R(e'”) is different from
| H(e')|. The two vertical arrows in each
graph indicate the frequencies 2mn/10 and
6n/10 of the sinusoids that compose the
input signal x(n). Calibrations in (e),
(f) and (g) are the same. H(.) =0 at
w, = 4n/10 and o, = 8n/10

changes sign (Fig. 1c). A zero phase FIR filter is one that
obeys expr. 2 with « = 0 (Fig. 1d).

A minor addition to the definition given above is that if
P(e’?) is nonpositive real a true linear phase filter is
obtained but with a sign inversion in the output signal.
But as this case is equivalent to the non-negative condition
only the latter will be considered in what follows.

Next it is shown in what cases phase distortion may
occur in linear phase FIR filters. Let us take as a proto-
type the low-pass linear phase FIR filter whose frequency
response H(e’”) = R(e’*)e ** is depicted in Fig. la. Its
phase response has jumps of size n. The input signal x(n)
has a Fourier transform X(e/?) = | X(e/®)| . The
output signal’s Fourier transform is

Y(ejm) L R(ejm)lx(ejwne—ﬂaw + Ppxlw)) (3)
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Therefore, the output signal y(n) can be written as:

yn) = % jRR(d”) | X(e’?)| cos (wn + aw + ¢ (w)) do
0

= % J wlR(ef"’) | X(e*®)| cos (wn + aw + ¢ (w)) dw
o

a(n)
- e

+ R(e"*)| X(e?) | cos (wn + aw + ¢ () do

n Jag
> o

[z

| s

<+

R(e’)| X (') | cos (wn + aw + ¢ () dw

w2

o

c(n)
(4)

Expr. 4 shows that the output sequence is the super-
position of the three signals a(n), b(n) and c(n). When com-
pared with the ideal distortionless filter (= true linear
phase filter) the sequence b(n) has a sign inversion due to
the change of sign that occurs in R(e’) in the interval (w,,
@,). From these considerations it can be concluded that
distortions in y(n) will occur whenever sequence b(n) has
samples with significant amplitudes when compared with
the samples from signal a(n). This will happen when the
filter has a poorly attenuated stopband and the signal’s
spectrum has significant components at the stopband fre-
quencies. Filters with a small number of impulse response
coefficients have poorly attenuated stopbands and hence
may introduce phase distortions at the output (see Section
4).

It was shown above that if R(e’®) has a sign inversion
then phase distortions may occur. These sign inversions in
R(e’®) may occur in filters whose ideal amplitude response
is made up of at least one stopband with zero gain (or
minus infinity if gain is measured in dB). Typical examples
are the low-pass, high-pass, bandpass and bandstop filters.
FIR filters with odd-symmetric impulse responses are most
useful for differentiators and Hilbert transformers whose
ideal amplitude responses do not have any stopband with
null gain. Hence their phase responses will not exhibit any
undesirable phase switchings. That is why the emphasis in
this work is given to FIR filters with even-symmetric
impulse responses.

The general conclusion is that whenever an application
requires few impulse response coefficients, for example due
to speed or cost requirements, a true linear phase filter
should be used to avoid possibly harmful phase distor-
tions.

3 Design of true linear phase filters

In this section some guidelines will be presented for the
design of true linear phase filters. Two methods described
in the literature for the design of linear phase FIR filters
will be extended to encompass true linear phase filters.
Section 3.1 presents the integer coefficient design of LyNN
(1977) and Section 3.2 presents the window method.

Two other popular design methods are frequency sam-
pling with unconstrained samples in the transition band
and the minimax (RABINER and GoLp, 1975). If a true
linear phase filter is to be designed using either of these
two methods a linear programming approach seems advis-

3.1 Design of integer coefficient realisations by pole-zero
placement

LYNN (1977) presented a very useful method for design-
ing linear phase FIR filters with integer coefficients. The
method has been employed, for example, by AHLSTROM
and ToMPKINs (1985) in the design of low-pass and high-
pass FIR filters for the real-time processing of ECG
signals. It consists of placing zeros equally spaced around
the unit circle and then choosing poles to cancel zeros at

convenient places. For low-pass filters the following trans-
fer function is used:

s
H(z)=—z_l,meZ‘”
1—-z

It is easy to show that there is a pole-zero cancellation at
z=1. The filter is realised by the recursive difference
equation with integer coefficients y(n) = y(n — 1) + u(n)
— u(n — m), which is very suitable for fast operation.

For high-pass filters Lynn suggests using

1—z™™
Hizl= m, meZ*

However, a constraint is needed: m should be even.
Only in this case is the pole at z = —1 cancelled by a zero,
resulting in an adequate frequency response. Another
important observation is that, for any m, the phase
response of H(z) has an undesired constant n/2 term that

causes distortions at the output. If there is no DC level to
be filtered out, one should use instead

14+z-™
H(z) = 1 +z_l,modd

which has the desired phase response —w(m — 1)/2 for
small w.

For bandpass filters the following transfer function is
used:

1-z

H(Z)=1—2cosﬂz"+

—.meZ"
Z

where a complex conjugate pole pair z = e*# cancels a
corresponding complex zero pair. The sampling rate can
be adjusted to guarantee that 2 cos # is an integer. For
applications where the sidelobes of the amplitude response
need to be smaller, Lynn suggests using second- or higher-
order zeros and poles. The filters designed using the above
method may or may not have a true linear phase response.
For example, the bandpass filter (1 —z 2%)/(1 — z' + z7?)
in LYNN (1977) is not of the true linear phase type (see Fig.
5b).

A simple way of assuring true linear phase and integer
coefficients is to raise the numerator and denominator of
the transfer functions proposed by Lynn to an even power.
To see why this works it is sufficient to raise eqn. 1 to an
even power 2k (k € Z*), obtaining R**(e/?)e ~2/**® where
R**(e’®) is a non-negative function. The new filter transfer
functions become:

(i) low-pass filters

(1 0 z—m)Zk

—— ke Z*
(l_zvl)ZK €

H(z) =

(ii) high-pass filters

(1 ik z-rn)z.t

able as it is easy to impose linear constraints at the stop- H(z) = L meven, ke Z*
bands to obtain R(e/®) = 0. 1+2"Y
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(iii) bandpass filters

(] 1y z—m)Zk
(1l ~2cosBz272 3275

It should be noted that the phase response in case (ii) will
either have a constant = term (for odd k) or a 2n term (for
even k), neither of which causes any phase distortions. For
odd k there is a sign inversion at the filter’s output. The
cost paid for the improvement in phase (and magnitude)
response is a usually small increase in computation time.

H(z) = keZ*

3.2 Design using windows

In this well known method an ideal infinite duration
impulse response is truncated to N samples by a window.
The ideal impulse response is usually from an ideal low-
pass, high-pass, bandpass or bandstop filter. Less used
ideal filters are the differentiators and Hilbert trans-
formers. There is a wide variety of windows, such as the
rectangular, triangular, Hann, Hamming, Kaiser (HARRIS,
1978). Two approaches will be presented for the window
design of true linear phase FIR filters.

3.2.1 Use of windows with non-negative Fourier trans-
forms As the filter’s finite duration impulse response h(n) is
obtained by the multiplication of the ideal impulse
response h,n) with the window sequence w(n), its frequency
response H(e’”) is the periodic convolution of H {e’®) with
W(e’) (OpPENHEIM and SCHAFER, 1975). H (e’®) is the ideal
or desired frequency response and W(e/®) is the Fourier
transform of the window sequence. For causal linear phase
FIR filters of length N the following relationships hold:

H(e’®) = R fe/?)e 1
W(e'®) = R (e**)e />
with a = (N — 1)/2. Therefore

H(e'®) = ﬁ J. H "~ MW (e) do

Substituting the expressions for H(¢’*) and W(e’®) into the
expression above we have

He) =5 J RAe"® R (e)e Ko -9~ 4o
and therefore

e—jm n
H(e'®) = e ‘[ R{e"® "R (¢) db (5)
Expr. 5 shows that if R(-) and R,(-) are both non-
negative then H(e’®) = P(¢/)e /* where P(e’”) is non-
negative. The typical ideal functions R, (‘) are
non-negative, made of plateaus at positive or zero values
for low-pass, high-pass, bandpass and bandstop filters.
Therefore a sufficient condition for the design of true linear
phase filters is that the window should have a non-
negative Fourier transform, meaning that R(e’) >0,
w € [0, ]. Some known windows satisfy this property,
including the triangular (or Bartlett), Parzen, Boh!nan (or
Papoulis) (HARrris, 1978). They provide lower mdelp_bes
than the rectangular window but they widen the transition
band.

3.2.2 Use of arbitrary windows with adjustment of a
single impulse response coefficient The general expressions
for R(e’*) when h(n) is even-symmetric (CAPPELLINI et al.,
1978: RABINER and GoLD, 1975) indicate that for odd N
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there is a simple way of imposing non-negativeness on
R(e’). From the above-mentioned references

(N-1)/2

R(®)=a(0)+ Y a(m)cos(wm), N odd (6)
m=1
where, for a causal filter
N-1
(*5)
N -1 N -1
Zh( 2 —n) n=1,...,-2—-

and for a noncausal filter
o n=o0

| 2h(n)

n=0
a(n) =

a(n) N—1

2

The simple design procedure proposed consists of choos-
ing an odd N and designing the filter using any arbitrary
window (e.g. rectangular, Hann, Hamming). At this step a
set of coefficients a(0), a(1), . . .., a((N — 1)/2) is obtained
for a filter with an R(e’”) that has sign changes. In a
second step a new value for a(0) is chosen as the original
value obtained for a(0) minus the minimum value of Re’.
In this way the new set of coefficients defines a true linear
phase filter. This method gives satisfactory results for low-
pass, high-pass and bandstop filters, as well as for
bandpass filters centred around f,/4, where f, is the sam-
pling frequency.

T R

4 Examples comparing linear phase with true
linear phase filters

The examples presented in this section compare the
behaviour and the characteristics of linear with true linear
phase filters.

(a) In this example a simple waveform is generated and
filtered by a linear phase filter. The same waveform is
also filtered by a true linear phase filter having exactly
the same amplitude response. The linear phase filter
has an impulse response

1 n=0,1,234
) = {0 otherwise

This is a simple low-pass filter with an even-symmetric
impulse response having integer coefficients. Its trans-
fer function is

2+ +2 4241 -1
z* e Ly

H(z) =

and the frequency response is e 2/ (sin (5w/2))/sin
(w/2). Its magnitude as a function of  is shown in Fig.
la. The phase response is piecewise linear having dis-
continuities of size n (Fig. 1a) because R(e’”) = (sin
(5w/2))/sin (w/2) changes sign at @, = 4x/10 and w, =
87/10. The signal to be filtered is (Fig. le)

= §i 2—“ + sin 6—“ neZ
x(n) = sin lOn si 10n,

It is a superposition of two sinusoids, one at an
angular frequency of 2n/10 and the other 6a/10. Note
that the filter’s phase response has a discontinuity at
® = 4n/10, between the frequencies of the two sinus-
oids. The output signal is a very distorted version of
the input (Fig. 1f). However, if the filter were a true
linear phase filter (Fig. 1b), its output (Fig. 1g) would
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reflect the effects of the magnitude response only,
without exhibiting distortions caused by the phase
response. The waveform produced by the linear phase
filter (Fig. 1f) is quite different from the ideal output

(Fig. 1g), the cause being the constant phase difference
of n between the linear phase and the true linear phase
filters for @ € [4n/10, 8n/10). The same effects on the
output waveforms may be observed when comparing

the two noncausal filters in Figs. 1¢ and 1d. The non-
10— causal filter outputs are similar to Figs. 1f and 1g
except for the lack of delay with respect to the input
signal.
1 The next three examples show the effects of FIR
filtering on a bioelectrical signal: a motor unit action
potential (MUAP). MUAPs were recorded (50-
5000 Hz) using a concentric needle steel electrode
- inserted in the biceps brachii of a human subject. After
A/D conversion, a 128-point FFT was obtained from a
selected MUAP. The first 18 harmonics (cosine + sine)
plus the DC level were kept. The signal obtained from
the sum of the DC and the 18 harmonics will also be

called the MUAP and is shown in Fig. 2a. The magni-
X I ““ I tudes of the Fourier series coefficients of this MUAP
v A dRULLA | (i.e. the DC + 18 harmonics in the FFT) are shown in
R 02 46 8101211618 Fig. 2b. The filtering of this MUAP was achieved by
Ims harmonic_number L 2 - ;
e ! : ! g multiplying each of its components by the desired
r 4

filter’s frequency response at the component’s fre-
R quency. The superposition of these partial results con-

Fig. 2 Motor unit action potential (MUAP); (a) MUAP stituted the filter’s output. This procedure was followed
obtained by superposition of DC + 18 harmonics obtained because it was desired to compare the outputs of linear
computing the FFT of the original MUAP: (b) absolute phase and true linear phase filters having exactly the

value (linear scale, arbitrary units) of the Fourier series ifonts Apuenuna ifferi dv in ir vhase
components of the MUAP shown in (a). The abscissae in :‘els";)nsesg it Phspines, liuxing: onky: in Sheir phiey

(b) show calibrations either in harmonic number or in . : ;
frequency (kHz). The original MUAP was sampled at  (b) Nonrecursive notch FIR filters with very few integer
20 kHz coefficients are sometimes used in real-time filtering to

lH(c ""‘"}] dB
e

l L l v I Ll ' v ' L] ' Ll ' 1_'
0 R85 W 10412 1K 1618
harmonic number

a
urqH{cjw)

erafoie ]

0 4

'“-'-|-l'|'l' B T (S el

I L
I e R W B s e T

harmonic number
b d

Fig. 3 Effect of notch filtering on the MUAP of Fig. 2a. (a) Magnitude response of linear phase F Ilf filter H (z) =1+ z 2 and of
corresponding true linear phase FIR filter; (b) phase response of the linear phase filter (solid line) and_ of rhfz true linear phase
version (dotted line); (c) output from linear phase filter; (d) output from true linear phase filter. Abscissae in (a) and (b) are
calibrated according to the harmonics composing the input MU AP. Calibrations in (c) and (d) are the same, being also equal to

that in Fig. 2a
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eliminate sinusoidal interference. A simple linear phase
notch filter will be examined. Its impulse response is

| 1 B=1
hn)=:1 n=2
‘0 otherwise

and its transfer function is given by H(z) = (z* + 1)/z%
Figs. 3a and 3b show the magnitude and the phase
responses, respectively, of the notch filter described
above. The abscissae show where the different harmo-
nics that compose the MUAP fall. When the MUAP is
passed through this filter the output is as seen in Fig.
3c. However, if the filter had true linear phase charac-
teristics (the phase response in Fig. 3b would continue
at the dotted lines after abscissa 9) the filtered MUAP
would look like Fig. 3d. The difference between the two
waveforms is dramatic; the linear phase filter output
(Fig. 3c) exhibits distortions (e.g. an indentation near
the peak) that could lead to deceiving interpretations.

For example, the waveform of Fig. 3¢ could be inter-
preted as the superposition of two action potentials
from different (populations of) excitable cells.

(¢) In this example the same MUAP of Fig. 2a is low-pass
filtered. The filter’s impulse response is

1 0 e
h PN £ ] 7 L] k]
") {0 otherwise

The magnitude curve is remindful of that in Fig. la
(except that here there are more humps), with the first
dip chosen to occur at the 7th harmonic component of
the MUAP. The phase curve has switchings at the 7th
and 14th harmonics of the MUAP. The MUAP
appears at the output of this linear phase filter as
shown in Fig. 4a. If the filter had exactly the same
magnitude response but no phase jumps (i.e. a true
linear phase filter) the output would look like Fig. 4b.
Again the two waveforms are rather dissimilar, the first

..

r i v i I T L T T 1
0] 10 0 10
t.ms t.ms
a b
Fig. 4 (a) Output from linear phase FIR filter H(z) =1 + z7' + 272 + 273 + z7* + 275 + 2% when MU AP was applied at the input ;
(b) output from true linear phase filter having the same magnitude response and the same input signal as in (a). Ordinates and
abscissae in (a) and (b) are the same
; jw
|Hte ™), a8 |ste ], a8
0 = 0 -
1 1
-80 < e ——p—r—1—TW -0 -~ p——r—r—r1—1 w
o] m 0 ™
a c
j Gle "“")]
org |Hie ™) °’°[
2T AL N
< e
me -
o =
15 7 pRE
q
N R el TR P T B RN ead -an e G e v ke DR ARG AT
0 il 0 i
b d
Fig. 5 (a) Magnitude response (dB) of bandpass linear phase FIR filter with transfer function H(z) = (I — 222l =2t 2t

(b) phase response of the filter; (c) magnitude response (dB) of true linear phase bandpass FIR filter with transfer function

G(z) = (1 —z2"*)%(1 —2z"" +z7%?; (d) phase response of the true linear phase filter
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(d)

(e)

0

having an abnormally wide peak which lends it a trap-
ezoidal shape whereas the second has a more triangu-
lar form.

A waveform filtered by a linear phase FIR filter with
poorly attenuated stopbands (e.g. Fig. 4a) may have
one or several parameters adversely affected by a
piecewise linear phase response. If pulse amplitude,
duration, risetime or latency with respect to a stimulus
pulse (as in evoked potentials) are to be measured
accurately then a true linear phase filter is highly pref-
erable.

A first example of the integer coefficient design present-
ed in Section 3.1 will be a simple notch filter used
for real-time mains interference rejection. SCHLUTER
(1981) implemented the following notch filter for a
bedside arrhythmia monitor: H(z) =1+ z~3 This
filter has a n phase jump at @ = n/3. Therefore signal
components from n/3 to n will be filtered with a sign
inversion. However, if a true linear phase filter were
desired, the following could have been used:
1+227%4+2°%=(1+z%>% This new filter would
involve two extra arithmetic operations: a multiplica-
tion by 2 (i.e. a binary shift) and an addition. Generally
speaking, the small increase in the computation time
required by a true linear phase design is outweighed by
the considerable improvement in the filtering per-
formance.

LyNN's (1977, section 3.2, page 536) bandpass filter
H(z) =(1 —z7?%/(1 — z~ ! 4+ z~?) has its first sidelobes
approximately 13 dB below the main lobe, as can be
seen from Fig. 5a. Its phase response shows several
jumps of size = and is described by (n/2) — 1l@ for
small w (Fig. 5b). The filter can be expected to intro-
duce considerable distortions not only due to the =
phase difference in frequency regions corresponding to

| @), Riel®) uu[H(e""’] | Hiek®)| B
8 L 0
25
50+ T 1
0 we @, F
b
|Hel®) | g8
0
-25
-50 + - Y
o we 9, ®
2 d

Fig. 6 (a) Magnitude (solid line) and phase response ( broken
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line) of linear phase FIR filter with impulse response coef-
ficients h(0) = h(6) = 0-08584, h(1) = h(5) = 0-09355,
h(2) = h(4) = 009836, h(3) = 0-10000. The dotted line
indicates R(e'®) wherever it is different from |H(e*®)|;
(b) magnitude response in dB of the filter in (a); (c)
magnitude (solid line) and phase response (broken line) of
true linear phase filter obtained by increasing h(3) to the
value 0-23242. The magnitude curve is a shifted up version
of R(¢®) in (a) ; (d) magnitude response in dB of the filter
in(c)

poorly attenuated sidelobes but also due to the n/2
constant term. In other words, there would be phase
distortion even if the input signal’s energy were concen-
trated only within the main lobe. A great improvement
in performance can be obtained if the poles and zeros
of the transfer function H(z) given are taken with even
multiplicities as discussed in Section 3.1. Figs. 5¢ and
5d show the magnitude and phase responses, respec-
tively, for G(z)=(1—z"2%%/(1 —z"' + 2722 The
sidelobes decrease, as already pointed out by LYNN
(1977), but an equally important feature is that the new
phase response has no phase jumps nor any +mn/2
term. This true linear phase filter will not introduce
any phase distortion whatsoever.

(f) This example illustrates the second type of window

design proposed in Section 3.2 for true linear phase
filters. A low-order low-pass linear phase FIR filter was
designed using a simple interactive program based on
the window technique. The rectangular window was
used to minimise the width of the transition band. The
order of the filter was chosen to be 6 so that N is odd
(=7). The resulting frequency response is shown in Fig.
6a, with the amplitude response a solid line and the
phase response in broken lines. The dotted lines indi-
cate R(e/®) wherever it is different from | H(e’®)|. The
same magnitude response is plotted in dB in Fig. 6b.
The program provided the following symmetric
impulse response coefficients (keeping only five digits
for the mantissa):

h(0) = 0-08584 = h(6)
h(1) = 0-09355 = h(5)
h(2) = 0-09836 = h(4)
h(3) = 0-10000

As the resulting attenuation of the sidelobes is rather
small the phase jumps may lead to hazardous distor-
tions. The effect of increasing h(3) (i.e. a(0) in egn. 6) is
that of raising R(e’®). For large values of h(3) R(e/®) will
be completely above the horizontal axis but the ideal
condition is when it just touches it (Fig. 6¢). This con-
dition is met when h (3) = 0-23242. The resulting true
linear phase filter has an acceptable magnitude
response (Fig. 6d, solid line) showing a widening of the
passband and a decrease of about 3 dB in the
minimum attenuation at the stopband. If the user
wants to obtain a narrower passband he should choose
a larger N and repeat the procedure. If smaller side-
lobes are desired a different window should be used.
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