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ANDRÉ FABIO KOHN

University of São Paulo
Sao Paulo, Brazil

1. INTRODUCTION

Any physical quantity that varies with time is a signal.
Examples from physiology are being an electrocardiogram
(ECG), an electroencephalogram (EEG), an arterial pres-
sure waveform, and a variation of someone’s blood glucose
concentration along time. In Fig. 1, one one can see ex-
amples of two signals: an electromyogram (EMG) in (a)
and the corresponding force in (b). When a muscle con-
tracts, it generates a force or torque while it generates an
electrical signal that is the EMG (1). The experiment to
obtain these two signals is simple. The subject is seated
with one foot strapped to a pedal coupled to a force or
torque meter. Electrodes are attached to a calf muscle of
the right foot (m. soleus), and the signal is amplified. The
subject is instructed to produce an alternating pressure on
the pedal, starting after an initial rest period of about
2.5 s. During this initial period, the foot stays relaxed on
the pedal, which corresponds to practically no EMG signal
and a small force because of the foot resting on the pedal.
When the subject controls voluntarily the alternating con-
tractions, the random-looking EMG has waxing and wan-
ing modulations in its amplitude while the force also
exhibits an oscillating pattern (Fig. 1).

Biological signals vary as time goes on, but when they
are measured, for example, by a computerized system, the
measures are usually only taken at pre-specified times,
usually at equal time intervals. In a more formal jargon, it
is said that although the original biological signal is de-
fined in continuous time, the measured biological signal is
defined in discrete time. For continuous-time signals,
the time variable t takes values either from�1 to þ1 (in
theory) or in an interval between t1 and t2 (a subset of the
real numbers, t1 indicating the time when the signal
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started being observed in the experiment and t2 the final
time of observation). Such signals are indicated as y(t),
x(t), w(t), and so on. On the other hand, a discrete-time
signal is a set of measurements taken sequentially in
time (e.g., at every millisecond). Each measurement point
is usually called a sample, and a discrete-time signal is
indicated by by y(n), x(n), and w(n), where the index n is
an integer that points to the order of the measurements in
the sequence. Note that the time interval T between two
adjacent samples is not shown explicitly in the y(n) rep-
resentation, but this information is used whenever an in-
terpretation is required based on continuous-time units
(e.g., seconds). As a result of the low price of computers
and microprocessors, almost any equipment used today
in medicine or biomedical research uses digital signal
processing, which means that the signals are functions
of discrete time.

From basic probability and statistics theory, it is known
that in the analysis of a random variable (e.g., the height
of a population of human subjects), the mean and the
variance are very useful quantifiers (2). When studying
the linear relationship between two random variables
(e.g., the height and the weight of individuals in a popu-
lation), the correlation coefficient is an extremely useful
quantifier (2). The correlation coefficient between N
measurements of pairs of random variables, such as
the weight w and height h of human subjects, may be

estimated by

r¼
1
N

PN�1
i¼0 ðwðiÞ � �wÞ � ðhðiÞ � �hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
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N

PN�1
i¼ 0 ðhðiÞ �

�hÞ2
� �

r ; ð1Þ

where ½wðiÞ;hðiÞ�, i¼ 0; 1; 2; . . . ;N � 1 are the N pairs of
measurements (e.g., from subject number 0 up to subject
number N� 1); �w and �h are the mean values computed
from the N values of w(i) and h(i), respectively. Sometimes
r is called the linear correlation coefficient to emphasize
that it quantifies the degree of linear relation between two
variables. If the correlation coefficient between the two
variables w and h is near the maximum value 1, it is said
that the variables have a strong positive linear correla-
tion, and the measurements will gather around a line with
positive slope when one variable is plotted against the
other. On the contrary, if the correlation coefficient is near
the minimum attainable value of � 1, it is said that the
two variables have a strong negative linear correlation. In
this case, the measured points will gather around a neg-
atively sloped line. If the correlation coefficient is near the
value 0, the two variables are not linearly correlated and
the plot of the measured points will show a spread that
does not follow any specific straight line. Here, it may be
important to note that two variables may have a strong
nonlinear correlation and yet have almost zero value
for the linear correlation coefficient r. For example,
100 normally distributed random samples were generated
by computer for a variable h, whereas variable w
was computed according to the quadratic relation
w¼ 300 � ðh� hÞ2þ50. A plot of the pairs of points ðw;hÞ
will show that the samples follow a parabola, which means
that they are strongly correlated along such a parabola.
On the other hand, the value of r was 0.0373. Statistical
analysis suggests that such a low value of linear correla-
tion is not significantly different to zero. Therefore, a near
zero value of r does not necessarily mean the two variables
are not associated with one another, it could mean
that they are nonlinearly associated (see Extensions and
Further Applications).

On the other hand, a random signal is a broadening of
the concept of a random variable by the introduction of
variations along time and is part of the theory of random
processes. Many biological signals vary in a random way
in time (e.g., the EMG in Fig. 1) and hence their mathe-
matical characterization has to rely on probabilistic con-
cepts (3–5). For a random signal, the mean and the
autocorrelation are useful quantifiers, the first indicating
the constant level about which the signal varies and the
second indicating the statistical dependencies between the
values of two samples taken at a certain time interval. The
time relationship between two random signals may be an-
alyzed by the cross-correlation, which is very often used in
biomedical research.

Let us analyze briefly the problem of studying quanti-
tatively the time relationship between the two signals
shown in Fig. 1. Although the EMG in Fig. 1a looks
erratic, its amplitude modulations seem to have some pe-
riodicity. Such slow amplitude modulations are sometimes
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Figure 1. Two signals obtained from an experiment involving a
human pressing a pedal with his right foot. (a) The EMG of the
soleus muscle and (b) the force or torque applied to the pedal are
represented. The abscissae are in seconds and the ordinates are in
arbitrary units. The ordinate calibration is not important here
because in the computation of the correlation a division by the
standard deviation of each signal exists. Only the first 20 s of
the data are shown here. A 30 s data record was used to compute
the graphs of Figs. 2 and 3.
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called the ‘‘envelope’’ of the signal, which may be esti-
mated by smoothing the absolute value of the signal. The
force in Fig. 1b is much less erratic and exhibits a clearer
oscillation. Questions that may develop regarding such
signals (the EMG envelope and the force) include: what
periodicities are involved in the two signals? Are they the
same in the two signals? If so, is there a delay between the
two oscillations? What are the physiological interpreta-
tions? To answer the questions on the periodicities of each
signal, one may analyze their respective autocorrelation
functions, as shown in Fig. 2. The autocorrelation of the
absolute value of the EMG (a simple estimate of the en-
velope) shown in Fig. 2a has low-amplitude oscillations,
those of the force (Fig. 2b) are large, but both have the
same periodicity. The much lower amplitude oscillations
in the autocorrelation function of the absolute value of the
EMG when compared with that of the force autocorrela-
tion function reflects the fact that the periodicity in the
EMG amplitude modulations is masked to a good degree
by a random activity, which is not the case for the force
signal. To analyze the time relationship between the EMG
envelope and the force, their cross-correlation is shown in
Fig. 3a. The cross-correlation function in this figure has
the same period of oscillation as that of the random sig-
nals. In the more refined view of Fig. 3b, it can be seen that
the peak occurring closer to zero time shift does so at a

negative delay, meaning the EMG precedes the soleus
muscle force. Many factors, experimental and physiologic,
contribute to such a delay between the electrical activity of
the muscle and the torque exerted by the foot.

Signal processing tools such as the autocorrelation and
the cross-correlation have been used with much success in
a number of biomedical research projects. A few examples
will be cited for illustrative purposes. In a study of absence
epileptic seizures in animals, the cross-correlation be-
tween waves obtained from the cortex and a brain region
called the subthalamic nucleus was a key tool to show that
the two regions have their activities synchronized by a
specific corticothalamic network (6). The cross-correlation
function was used in Ref. 7 to show that insulin secretion
by the pancreas is an important determinant of insulin
clearance by the liver. In a study of preterm neonates, it
was shown in Ref. 8 that the correlation between the heart
rate variability (HRV) and the respiratory rhythm was
similar to that found in the fetus. The same authors also
employed the correlation analysis to compare the effects of
two types of artificial ventilation equipment on the HRV-
respiration interrelation.

After an interpretation is drawn from a cross-correla-
tion study, this signal processing tool may be potentially
useful for diagnostic purposes. For example, in healthy
subjects, the cross-correlation between arterial blood pres-
sure and intracranial blood flow showed a negative peak
at positive delays, differently from patients with a mal-
functioning cerebrovascular system (9).

Next, the step-by-step computations of an autocorrela-
tion function will be shown based on the known concept of
correlation coefficient of statistics. Actually, different, but
related, definitions of autocorrelation and cross-correlation
exists in the literature. Some are normalized versions of
others, for example. The definition to be given in this sec-
tion is not the one usually studied in undergraduate engi-
neering courses, but is being presented here first because it
is probably easier to understand by readers from other
backgrounds. Other definitions will be presented in later
sections and the links between them will be readily appar-
ent. In this section, the single term autocorrelation shall be
used for simplicity and, later (see Basic Definitions), will
present some of the more precise names that have been
associated with the definition presented here (10,11).

The approach of defining an autocorrelation function
based on the cross-correlation coefficient should help in
the understanding of what the autocorrelation function
tells us about a random signal. Assume that we are given
a random signal x(n), with n being the counting variable:
n¼ 0; 1; 2; . . . ;N � 1. For example, the samples of x(n) may
have been measured at every 1 ms, there being a total of N
samples.

The mean or average of signal x(n) is the value �x given
by

�x¼
1

N

X

N�1

n¼ 0

xðnÞ; ð2Þ

and gives an estimate of the value about which the signal
varies. As an example, in Fig. 4a, the signal x(n) has a
mean that is approximately equal to 0. In addition to the
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Figure 2. Autocorrelation functions of the signals shown in
Fig. 1. (a) shows the autocorrelation function of the absolute
value of the EMG and (b) shows the autocorrelation function of
the force. These autocorrelation functions were computed based
on the correlation coefficient, as explained in the text. The ab-
scissae are in seconds and the ordinates are dimensionless, rang-
ing from �1 to 1. For these computations, the initial transients
from 0 to 5 s in both signals were discarded.
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mean, another function is needed to characterize how x(n)
varies in time. In this example, one can see that x(n)
has some periodicity, oscillating with positive and nega-
tive peaks repeating approximately at every 10 samples
(Fig. 4a). The new function to be defined is the autocorre-
lation rxxðkÞ of x(n), which will quantify how much a given
signal is similar to time-shifted versions of itself (5). One
way to compute it is by using the following formula based
on the definition (Equation 1)

rxxðkÞ¼
1
N

PN�1
n¼ 0 ðxðn� kÞ � �xÞ � ðxðnÞ � �xÞ

1
N

PN�1
n¼ 0 ðxðnÞ � �xÞ2

; ð3Þ

where x(n) is supposed to have N samples. Any sample
outside the range ½0;N � 1� is taken to be zero in the com-
putation of rxxðkÞ.

The computation steps are as follows:

* Compute the correlation coefficient between the N
samples of x(n) paired with the N samples of x(n) and
call it rxxð0Þ. The value of rxxð0Þ is equal to 1 because
any pair is formed by two equal values [e.g.,
½xð0Þ; xð0Þ�, ½xð1Þ; xð1Þ�; . . . ; ½xðN � 1Þ; xðN � 1Þ�] as seen
in the scatter plot of the samples of x(n) with those of
x(n) in Fig. 5a. The points are all along the diagonal,
which means the correlation coefficient is unity.

* Next, shift x(n) by one sample to the right, obtai-
ning xðn� 1Þ, and then determine the correlation
coefficient between the samples of x(n) and xðn� 1Þ
(i.e., for n¼ 1, take the pair of samples ½xð1Þ; xð0Þ�, for
n¼ 2 take the pair ½xð2Þ; xð1Þ� and so on, until the pair

½xðN � 1Þ; xðN � 2Þ�). The correlation coefficient of
these pairs of points is denoted rxxð1Þ.

* Repeat for a two-sample shift and compute rxxð2Þ, for a
three-sample shift and compute rxxð3Þ, and so on.
When x(n) is shifted by 3 samples to the right
(Fig. 4b), the resulting signal xðn� 3Þ has its peaks
and valleys still repeating at approximately 10 sam-
ples, but these are no longer aligned with those of x(n).
When their scatter plot is drawn (Fig. 5b), it seems
that their correlation coefficient is near zero, so we
should have rxxð3Þ � 0. Note that as xðn� 3Þ is equal
to x(n) delayed by 3 samples, the need exists to define
what the values of xðn� 3Þ are for n¼ 0; 1;2. As x(n) is
known only from n¼ 0 onwards, we make the three
initial samples of xðn� 3Þ equal to 0, which has some-
times been called in the engineering literature as zero
padding.

* Shifting x(n) by 5 samples to the right (Fig. 4c), gen-
erates a signal xðn� 5Þ still with the same periodicity
as the original x(n), but with peaks aligned with
the valleys in x(n). The corresponding scatter plot
(Fig. 5c) indicates a negative correlation coefficient.

* Finally, shifting x(n) by a number of samples equal to
the approximate period gives xðn� 10Þ, which has its
peaks (valleys) approximately aligned with the peaks
(valleys) of xðnÞ, as can be seen in Fig. 4d. The corre-
sponding scatter plot (Fig. 5d) indicates a positive
correlation coefficient. If x(n) is shifted by multiples of
10, there will again be coincidences between its peaks
and those of x(n), and again the correlation coefficient
of their samples will be positive.
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Figure 3. Cross-correlation between the absolute value
of the EMG and the force signals shown in Fig. 1. (a)
shows the full cross-correlation and (b) shows an en-
larged view around abscissa 0. The abscissae are in sec-
onds and the ordinates are dimensionless, ranging from
�1 to 1. For this computation, the initial transients
from 0 to 5 s in both signals were discarded.
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Figure 4. Random discrete-time signal x(n) in
(a) is used as a basis to explain the concept of
autocorrelation. In (b)–(d), the samples of x(n)
were delayed by 3, 5, and 10 samples, respec-
tively. The two vertical lines were drawn to help
visualize the temporal relations between the
samples of the reference signal at the top and
the three time-shifted versions below. (This
figure is available in full color at http://
www.mrw.interscience.wiley.com/ebe.)
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Figure 5. Scatter plots of samples of the signals shown
in Fig. 4: (a) x(n) and x(n), (b) x(n) in the abscissa and
x(n�3) in the ordinate, (c) x(n) in the abscissa and
x(n�5) in the ordinate, (d) x(n) in the abscissa
and x(n�10) in the ordinate. The computed values of
the correlation coefficient from (a)–(d) were 1, �0.19,
�0.79, and 0.66, respectively.
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Collecting the values of the correlation coefficients for
the different pairs x(n) and xðn� kÞ and assigning them to
rxxðkÞ, for positive and negative shift values k, the auto-
correlation shown in Fig. 6 is obtained. In this and other
figures, the hat ‘‘^’’over a symbol is used to indicate esti-
mations from data, to differentiate from the theoretical
quantities, for example, as defined in Equations 14 and 15.
Indeed, the values for k¼ 0, k¼ 3, k¼ 5 and k¼ 10 confirm
the analyses based on the scatter plots of Fig. 5. The au-
tocorrelation function is symmetric with respect to k¼ 0
because the correlation between samples of x(n) and xðn�
kÞ is the same as the correlation between x(n) and xðnþ kÞ,
where n and k are integers. This example suggests that
the autocorrelation of a periodic signal will exhibit peaks
(and valleys) repeating with the same period as the sig-
nal’s. The decrease in subsequent peak values away from
time shift k¼ 0 is because of the finite duration of the sig-
nal, which requires the use of zero-padding in the compu-
tation of the autocorrelation (this process will be dealt
with in section 6.1 later in this chapter). In conclusion, the
autocorrelation gives an idea of the similarity between a
given signal and time-shifted replicas of itself. A different
viewpoint is associated with the following question: Does
the knowledge of the value of a sample of the signal x(n) at
an arbitrary time n¼L, say xðLÞ ¼5:2, give some ‘‘infor-
mation-’’ as to the value of a future sample, say at
n¼Lþ 3? Intuitively, if the random signal varies ‘‘slowly,’’
then the answer is yes, but if it varies ‘‘fast,’’ then the an-
swer is no. The autocorrelation is the right tool to quantify
the signal variability or the degree of ‘‘information’’ be-
tween nearby samples. If the autocorrelation decays
slowly from value 1 at k¼ 0 (e.g., its value is still near 1
for k¼ 3), then a sample value 5.2 of the given signal at
n¼L tells us that at n¼Lþ 3 the value of the signal will
be ‘‘near’’ the sample value 5.2, with high probability. On

the contrary, if the autocorrelation for k¼ 3 is already
near 0, then the value of the signal at n¼Lþ 3 has little or
no relation to the value 5.2 attained three units of time
earlier. In a loose sense, one could say that the signal has
more memory in the former situation than in the latter.
The autocorrelation depends on the independent variable
k, which is called ‘‘lag,’’ ‘‘delay,’’ or ‘‘time shift’’ in the lit-
erature. The autocorrelation definition given above was
based on a discrete-time case, but a similar procedure is
followed for a continuous-time signal, where the autocor-
relation rxxðtÞ will depend on a continuous-time variable t.

Real-life signals are often less well-behaved than the
signal shown in Fig 4a, or even those in Fig. 1. Two signals
x(t) and y(t) shown in Fig. 7a and 7b, respectively, are more
representative of the difficulties one usually encounters in
extracting useful information from random signals. A vi-
sual analysis suggests that the two signals are indeed dif-
ferent in their ‘‘randomness,’’ but it is certainly not easy to
pinpoint in what aspects they are different. The respective
autocorrelations, shown in Fig. 8a and 8b, are monotonic
for the first signal and oscillatory for the second. Such an
oscillatory autocorrelation function would mean that two
amplitude values in y(t) taken 6 ms apart (or a time inter-
val between about 5 ms and 10 ms) (see Fig. 8b) would
have a negative correlation, meaning that if the first am-
plitude value is positive, the other will probably be nega-
tive and vice-versa (note that in Equation 3 the mean
value of the signal is subtracted). The explanation of the
monotonic autocorrelation will require some mathemati-
cal considerations, which will be presented later in this
chapter in section 3. An understanding of the ways differ-
ent autocorrelation functions may occur could be impor-
tant in discriminating between the behaviors of a
biological system subjected to two different experimental
conditions, or between normal and pathological cases. In
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addition, the autocorrelation is able to uncover a periodic
signal masked by noise (e.g., Fig. 1a and Fig. 2a), which is
relevant in the biomedical setting because many times the
biologically interesting signal is masked by other ongoing
biological signals or by measurement noise. Finally, when
validating stochastic models of biological systems such as
neurons, autocorrelation functions obtained from the
mathematical model of the physiological system may be
compared with autocorrelations computed from experi-
mental data obtained from the physiological system, see,
for example, Kohn (12).

When two signals x and y are measured simultaneously
in a given experiment, as in the example of Fig. 1, one may
be interested in knowing if the two signals are entirely
independent from each other, or if some correlation exists
between them. In the simplest case, there could be a delay
between one signal and the other. The cross-correlation is
a frequently used tool when studying the dependency be-
tween two random signals. A (normalized) cross-correla-
tion rxyðkÞ may be defined and explained in the same way
as we did for the autocorrelation in Figs. 4–6 (i.e., by com-
puting the correlation coefficients between the samples of
one of the signals, x(n), and those of the other signal time-
shifted by k, yðn� kÞ) (5). The formula is the following:

rxyðkÞ¼
1
N

PN�1
n¼ 0 ðxðnÞ � �xÞ � ðyðn� kÞ � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN�1
n¼ 0 ðxðnÞ � �xÞ2

� �

� 1
N

PN�1
n¼ 0 ðyðnÞ � �yÞ2

� �

r ;

ð4Þ

where both signals are supposed to have N samples each.
Any sample of either signal outside the range ½0;N � 1�

is taken to be zero in the computation of rxxðkÞ (zero
padding).

It should be clear that if one signal is a delayed version
of the other, the cross-correlation at a time shift value
equal to the delay between the two signals will be equal to
1. In the example of Fig. 1, the force signal at the bottom is
a delayed version of the EMG envelope at the top, as in-
dicated by the cross-correlation in Fig. 3.

The emphasis in this chapter is to present the main
concepts on the auto and cross-correlation functions,
which are necessary to pursue research projects in
biomedical engineering.

2. AUTOCORRELATION OF A STATIONARY RANDOM
PROCESS

2.1. Introduction

Initially, some concepts from random process theory shall
be reviewed briefly, as covered in undergraduate courses
in electrical or biomedical engineering, see, for example,
Peebles (3) or Papoulis and Pillai (10). A random process
is an infinite collection or ensemble of functions of time
(continuous or discrete time), called sample functions or
realizations (e.g., segments of EEG recordings). In contin-
uous time, one could indicate the random process as X(t)
and in discrete time as X(n). Each sample function is as-
sociated with the outcome of an experiment that has a
given probabilistic description and may be indicated by
x(t) or x(n), for continuous or discrete time, respectively.
When the ensemble of sample functions is viewed at any
single time, say t1 for a continuous time process, a random
variable is obtained whose probability distribution func-
tion is FX ;t1

ða1Þ¼P½Xðt1Þ � a1�, for a1 2 R, and where P½:�
stands for probability. If the process is viewed at two times
t1 and t2, a bivariate distribution function is needed to
describe the pair of resulting random variables Xðt1Þ and
Xðt2Þ: FX;t1 ;t2

ða1; a2Þ¼P½Xðt1Þ � a1;Xðt2Þ � a2�, for a1,
a2 2 R. The random process is fully described by the
joint distribution functions of any N random variables de-
fined at arbitrary times t1; t2; . . . ;N, for arbitrary integer
number N

P½Xðt1Þ � a1;Xðt2Þ � a2; . . . ;XðtNÞ � aN �;

for a1; a2; . . . ; aN 2 R:
ð5Þ

In many applications, the properties of the random pro-
cess may be assumed to be independent of the specific
values t1; t2; . . . ; tN, in the sense that if a fixed time shift T
is given to all instants ti i¼ 1; . . . ;N, the probability dis-
tribution function does not change:

P½Xðt1þTÞ � a1;Xðt2þTÞ � a2; . . . ;XðtN þTÞ � aN �

¼P½Xðt1Þ � a1;Xðt2Þ � a2; . . . ;XðtNÞ � aN �:
ð6Þ

If Equation 6 holds for all possible values of ti, T
and N, the process is called strictsense stationary (3).
This class of random processes has interesting properties,
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Figure 8. The respective autocorrelation functions of the two
signals in Fig. 7. They are quite different from each other: in (a)
the decay is monotonic to both sides from the peak value of 1 at
t¼0, and in (b) the decay is oscillatory. These major differences
between the two random signals shown in Fig. 7 are not visible
directly from their time courses. The abscissae are in miliseconds.
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such as:

E½XðtÞ� ¼m¼ cons tan t 8t ð7Þ

E½Xðtþ tÞ � XðtÞ� ¼ functionðtÞ ð8Þ

The first result in Equation 7 means that the mean value
of the random process is a constant value for any time t.
The second result in Equation 8 means that the second-
order moment defined on the process at times t2¼ tþ t and
t1¼ t, depends only on the time difference t¼ t2 � t1 and is
independent of the time parameter t. These two (Equations
7 and 8) are so important in practical applications that
whenever they are true, the random process is said to be
wide-sense stationary. This definition of stationarity is
feasible to be tested in practice, and many times a random
process that satisfies Equations 7, 8 is simply called ‘‘sta-
tionary’’ and otherwise it is simply called ‘‘nonstationary.’’
The autocorrelation and cross-correlation analyses devel-
oped in this chapter are especially useful for such station-
ary random processes. All random processes considered in
this chapter will be wide-sense stationary.

In real-life applications, the wide-sense stationarity as-
sumption is usually valid only approximately and only for
a limited time interval. This interval must usually be es-
timated experimentally (4) or be adopted from previous
research reported in the literature. This assumption cer-
tainly simplifies both the theory as well as the signal pro-
cessing methods. In the present text, it shall be assume
that all random processes are wide-sense stationary. An-
other fundamental property that shall be assumed is that
the random process is ergodic, meaning that any appro-
priate time average computed from a given sample func-
tion converges to a corresponding expected value defined
over the random process (10). Thus, for example, for an
ergodic process (Equation 2) would give useful estimates
of the expected value of the random process (Equation 7),
for sufficiently large values of N. Ergodicity assumes that
a finite set of physiological recordings obtained under a
certain experimental condition should yield useful esti-
mates of the general random behavior of the physiological
system, under the same experimental conditions and in
the same physiological state, which is of utmost impor-
tance because in practice all we have is a sample function
and from it have to estimate and infer things related to the
random process that generated that sample function.

A random signal may be defined as a sample function
or realization of a random process. Many signals mea-
sured from humans or animals exhibit some degree of un-
predicatibility, and may be considered as random. The
sources of unpredictability in biological signals may be
associated with (1) a large number of uncontrolled and
unmeasured internal mechanisms, (2) intrinsically ran-
dom internal physicochemical mechanisms, and (3) a fluc-
tuating environment. When measuring randomly varying
phenomena from humans or animals, only one or a few
sample functions of a given random process are obtained.
Under the ergodic property, appropriate processing of a
random signal may permit the estimation of characteris-
tics of the random process, which is why random signal
processing techniques (such as auto and cross-correlation)
are so important in practice.

The complete probabilistic description of a random pro-
cess Equation 5 is impossible to obtain in practical terms.
Instead, first and second moments are very often em-
ployed in real-life applications. Examples of these appli-
cations are the mean, the auto correlation, and cross-
correlation functions (13), which are the main topics of
this chapter, and the auto and cross-spectra. The auto-
spectrum and the cross-spectrum are functions of fre-
quency, being related to the auto and cross-correlation
functions via the Fourier transform.

Knowledge of the basic theory of random processes is a
pre-requisite for a correct interpretation of results ob-
tained from the processing of random signals. Also, the
algorithms used to compute estimates of parameters or
functions associated with random processes are all based
on the underlying random process theory.

All signals in this chapter will be assumed to be
real and originating from a wide-sense stationary random
process.

2.2. Basic Definitions

The mean or expected value of a continuous-time random
processes X(t) is defined as

mx¼E½XðtÞ�; ð9Þ

where the time variable t is defined on a subset of the real
numbers and E½� is the expected value operation. The
mean is a constant value because all random processes
are assumed to be wide-sense stationary. The definition
above is a mean calculated over all sample functions of the
random process.

The autocorrelation of a continuous-time random pro-
cesses X(t) is defined as

RxxðtÞ ¼E½Xðtþ tÞ � XðtÞ�; ð10Þ

where the time variables t and t are defined on a subset of
the real numbers. As was mentioned before, the nomen-
clature varies somewhat in the literature. The definition
of autocorrelation given in Equation 10 is the one typically
found in engineering books and papers. The value
Rxxð0Þ¼E½X2ðtÞ� is sometimes called the average total
power of the signal and its square root is the ‘‘root mean
square’’ (RMS) value, employed frequently to characterize
the ‘‘amplitude’’ of a biological random signal such as
the EMG (1).

An equally important and related second moment is the
autocovariance, defined for continuous time as

CxxðtÞ¼E½ðXðtþ tÞ � mxÞ � ðXðtÞ � mxÞ� ¼RxxðtÞ � m2
x ð11Þ

The autocovariance at t¼0 is equal to the variance of
the process and is sometimes called the average ac power
(the average total power minus the square of the dc value):

Cxxð0Þ¼s2
x ¼E½ðXðtÞ � mxÞ

2
� ¼E½X2ðtÞ� � m2

x ð12Þ

For a stationary random process, the mean, average total
power and variance are constant values, independent of time.
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The autocorrelation for a discrete-time random process
is

RxxðkÞ¼E½Xðnþ kÞ � XðnÞ� ¼E½Xðn� kÞ � XðnÞ�; ð13Þ

where n and k are integer numbers. Any of the two ex-
pressions may be used, either with Xðnþ kÞ � XðnÞ or with
Xðn� kÞ � XðnÞ. In what follows, preference shall be given
to the first expression to keep consistency with the defi-
nition of cross-correlation to be given later.

For discrete-time processes, an analogous definition of
autocovariance follows:

CxxðkÞ¼E½ðXðnþ kÞ � mxÞ � ðXðnÞ � mx� ¼RxxðkÞ � m2
x ; ð14Þ

where again Cxxð0Þ¼s2
x ¼E½ðXðkÞ � mxÞ

2
� is the constant

variance of the stationary random process X(k). Also
mx¼E½XðnÞ�, a constant, is its expected value. In many
applications, the interest is in studying the variations of a
random processes about its mean, which is what the au-
tocovariance represents. For example, to characterize the
variability of the muscle force exerted by a human subject
in a certain test, the interest is in quantifying how the
force varies randomly around the mean value, and hence
the autocovariance is more interesting than the autocor-
relation.

The independent variable t or k in Equations 10, 11, 13
or 14 will be called, interchangeably, time shift, lag, or
delay.

It should be mentioned that some books and papers,
mainly those on time series analysis (5,11), define the au-
tocorrelation function of a random process as (for discrete
time):

rxxðkÞ¼
CxxðkÞ

s2
x

¼
CxxðkÞ

Cxxð0Þ
ð15Þ

(i.e., the autocovariance divided by the variance of the
process). It should be noticed that rxxð0Þ ¼1. Actually, this
definition was used in the Introduction of this chapter.
The definition in Equation 15 differs from that in Equation
13 in two respects: The mean of the signal is subtracted
and a normalization exists so that at k¼ 0 the value is 1.
To avoid confusion with the standard engineering nomen-
clature, the definition in Equation 15 may be called the
normalized autocovariance, the correlation coefficient
function, or still the autocorrelation coefficient. In the
text that follows, preference is given to the term normal-
ized autocovariance.

2.3. Basic Properties

From their definitions, the autocorrelation and autoco-
variance (normalized or not) are even functions of the
time shift parameter, because, Xðtþ tÞ � XðtÞ¼Xðt� tÞ �
XðtÞ and Xðnþ kÞ � XðnÞ¼Xðn� kÞ � XðnÞ for continuous-
and discrete-time process, respectively. The property is
indicated below only for the discrete-time case (for contin-
uous-time, replace k by t):

RxxðkÞ ¼Rxxð�kÞ; ð16Þ

and

CxxðkÞ¼Cxxð�kÞ; ð17Þ

as well as for the normalized autocovariance:

rxxðkÞ¼ rxxð�kÞ: ð18Þ

Three important inequalities may be derived (10) for
both continuous-time and discrete-time random processes.
Only the result for the discrete-time case is shown below
(for continuous-time, replace k by t):

jRxxðkÞj � Rxxð0Þ¼s2
x þ m2

x 8k 2 Z ð19Þ

jCxxðkÞj � Cxxð0Þ¼ s2
x 8k 2 Z; ð20Þ

and

jrxxðkÞ � 1 8k 2 Z; ð21Þ

with rxxð0Þ¼ 1.
These relations say that the maximum of either the

autocorrelation or autocovariance occurs at lag 0.
Any discrete-time ergodic random process without a

periodic component will satisfy the following limits:

lim
jkj!1

RxxðkÞ¼ m2
x ð22Þ

and

lim
jkj!1

CxxðkÞ¼ 0 ð23Þ

and similarly for continuous-time processes by changing k
for t. These relations mean that two random variables
defined in X(n) at two different times n1 and n1þ k
will tend to be uncorrelated as they are farther apart
(i.e., the ‘‘memory’’ decays when the time interval k
increases).

A final, more subtle, property of the autocorrelation is
that it is positive semi-definite (10,14), expressed here
only for the discrete-time case:

X

K

i¼ 1

X

K

j¼ 1

aiajRxxðki � kjÞ 	 0 for 8K 2 Zþ ; ð24Þ

where a1; a2; . . . ; aK are arbitrary real numbers and
k1;k2; . . . ; kK 2 Z are any set of discrete-time points. This
same result is valid for the autocovariance (normalized or
not). This property means that not all functions that sat-
isfy Equations 16 and 19 can be autocorrelation functions
of some random process, they also have to be positive
semi-definite.

2.4. Fourier Transform of the Autocorrelation

A very useful frequency-domain function related to the
correlation/covariance functions is the power spectrum Sxx

of the random process X (continuous or discrete-time),
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defined as the Fourier transform of the autocorrelation
function (10,15). For continuous time, we have

SxxðjoÞ¼Fourier transform ½RxxðtÞ�; ð25Þ

where the angular frequency o is in rad/s. The average
power Pxx of the random process X(t) is

Pxx¼
1

2p

Z 1

�1

SxxðjoÞdo¼Rxxð0Þ: ð26Þ

If the average power in a given frequency band ½o1;o2�

is needed, it can be computed by

Pxx¼
1

p

Z o2

o1

SxxðjoÞdo: ð27Þ

For discrete time

Sxxðe
jOÞ¼Discrete Time Fourier transform ½RxxðkÞ�; ð28Þ

where O is the normalized angular frequency given in rad
(O¼o � T, where T is the sampling interval). In Equation
28 the power spectrum is periodic in O, with a period equal
to 2p. The average power Pxx of the random process X(n) is

Pxx¼
1

2p

Z p

�p
Sxxðe

jOÞdO¼Rxxð0Þ: ð29Þ

Other common names for the power spectrum are power
spectral density and autospectrum. The power spectrum is
a real non-negative and even function of frequency
(10,15), which requires a positive semi-definite autocorre-
lation function (10), which means that not all functions
that satisfy Equations 16 and 19 are valid autocorrelation
functions because the corresponding power spectrum
could have negative values for some frequency ranges,
which is absurd.

The power spectrum should be used instead of the au-
tocorrelation function in situations such as: (1) when the
objective is to study the bandwidth occupied by a random
signal, and (2) when one wants to discover if there are
several periodic signals masked by noise (for a single pe-
riodic signal masked by noise the autocorrelation may be
useful too).

2.5. White Noise

Continuous-time white noise is characterized by an auto-
covariance that is proportional to the Dirac impulse func-
tion:

CxxðtÞ¼C � dðtÞ; ð30Þ

where C is a positive constant and the Dirac impulse is
defined as

dðtÞ ¼0 for tO0 ð31Þ

dðtÞ¼1 for t¼ 0; ð32Þ

and

Z 1

�1

dðtÞdt¼ 1: ð33Þ

The autocorrelation of continuous-time white noise is:

RxxðtÞ¼C � dðtÞþ m2
x ; ð34Þ

where mx is the mean of the process.
From Equations 12 and 30 it follows that the variance

of the continuous-time white process is infinite (14), which
indicates that it is not physically realizable. From Equa-
tion 30 we conclude that, for any time shift value t, no
matter how small, the correlation coefficient between any
value in X(t) and the value at Xðtþ tÞ would be equal to
zero, which is certainly impossible to satisfy in practice
because of the finite risetimes of the outputs of any phys-
ical system. From Equation 25 it follows that the power
spectrum of continuous-time white noise (with mx¼0) has
a constant value equal to C at all frequencies. The name
white noise comes from an extension of the concept of
‘‘white light,’’ which similarly has constant power over the
range of frequencies in the visible spectrum. White noise is
non-realizable, because it would have to be generated by a
system with infinite bandwidth.

Engineering texts circumvent the difficulties with the
continuous-time white noise by defining a band-limited
white noise (3,13). The corresponding power spectral
density is constant up to very high frequencies ðocÞ, and
is zero elsewhere, which makes the variance finite. The
maximum spectral frequency oc is taken to be much
higher than the bandwidth of the system to which the
noise is applied. Therefore, in approximation, the power
spectrum is taken to be constant at all frequencies, the
autocovariance is a Dirac delta function, and yet a finite
variance is defined for the random process.

The utility of the concept of white noise develops when
it is applied at the input of a finite bandwidth system, be-
cause the corresponding output is a well-defined random
process with physical significance (see next section).

In discrete time, the white-noise process has an auto-
covariance proportional to the unit sample sequence:

CxxðkÞ¼C � dðkÞ; ð35Þ

where C is a finite positive real value, and

RxxðkÞ¼C � dðkÞþ m2
x ; ð36Þ

where dðkÞ¼ 1 for k¼ 0 and dðkÞ¼ 0 for k 6¼ 0. The discrete-
time white noise has a finite variance, s2¼C in Equation
35, is realizable and it may be synthesized by taking a se-
quence of independent random numbers from an arbitrary
probability distribution. Sequences that have independent
samples with identical probability distributions are usu-
ally called i.i.d. (independent identically distributed).
Computer-generated ‘‘random’’ (pseudo-random) se-
quences are usually very good approximations to a
white-noise discrete-time random signal, being usually
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of zero mean and unit variance for a normal or Gaussian
distribution. To achieve desired values of C in Equation 35
and m2

x in Equation 36 one should multiply the (zero mean,
unit variance) values of the computer-generated white se-
quence by

ffiffiffiffi

C
p

and sum to each resulting value the con-
stant value mx.

3. AUTOCORRELATION OF THE OUTPUT OF A LINEAR
SYSTEM WITH RANDOM INPUT

In relation to the examples presented in the previous sec-
tion, one may ask how may two random processes develop
such differences in the autocorrelation as seen in Fig. 8.
How may one autocorrelation be monotonically decreasing
(for increasing positive t) while the other exhibits oscilla-
tions? For this purpose, how the autocorrelation of a signal
changes when it is passed through a time-invariant linear
system will be examined.

If a continuous-time linear system has an impulse re-
sponse h(t) and a random process X(t) with an autocorre-
lation RxxðtÞ is applied at its input the resultant output y(t)
will have an autocorrelation given by the following convo-
lutions (10):

RyyðtÞ¼hðtÞ � hð�tÞ �RxxðtÞ: ð37Þ

Note that hðtÞ � hð�tÞ may be viewed as an autocorrela-
tion of hðtÞ with itself and, hence, is an even function.

Taking the Fourier transform we conclude Equation 37,
it is that the output power spectrum SyyðjoÞ is the absolute
value squared of the frequency response function HðjoÞ
times the input power spectrum SxxðjoÞ:

SyyðjoÞ¼ jHðjoÞj2 � SxxðjoÞ; ð38Þ

where HðjoÞ is the Fourier transform of h(t), SxxðjoÞ is the
Fourier transform of RxxðtÞ, and SyyðjoÞ is the Fourier
transform of RyyðtÞ.

The corresponding expressions for the autocorrelation
and power spectrum for the output signal from a discrete-
time system are (15)

RyyðkÞ¼hðkÞ � hð�kÞ �RxxðkÞ ð39Þ

and

Syyðe
jOÞ¼ jHðejOÞj2 � Sxxðe

jOÞ; ð40Þ

where h(k) is the impulse (or unit sample) response of the
system, HðejOÞ is the frequency response function of the
system, and Sxxðe

jOÞ and Syyðe
jOÞ are the discrete-time

Fourier transforms of RxxðkÞ and RyyðkÞ, respectively.
Sxxðe

jOÞ and Syyðe
jOÞ are the input and output power

spectra, respectively. As an example, suppose that
yðnÞ¼ ½xðnÞþ xðn� 1Þ�=2 is the difference equation that
defines a given system. This is an example of a finite im-
pulse response (FIR) system (16) with impulse response
equal to 0.5 for n¼ 0; 1 and 0 for other values of n. If
the input is discrete-time white noise with unit variance,
then from Equation 39 the output autocorrelation is a

triangular sequence centered at k¼0, with amplitude 0.5
at k¼ 0, amplitude 0.25 at k¼ 
 1 and 0 elsewhere.

If two new random processes are defined as U¼X � mx

and Q¼Y � my, it follows from the definitions of autocor-
relation and autocovariance that Ruu¼Cxx and Rqq¼Cyy.
Therefore, applying Equation 37 or Equation 39 to a sys-
tem with input U and output Y, similar expressions to
Equations 37 and 39 are obtained relating the input and
output autocovariances, shown below only for the discrete-
time case:

CyyðkÞ¼hðkÞ � hð�kÞ � CxxðkÞ: ð41Þ

Furthermore, if U¼ ðX � mxÞ=sx and Q¼ðY � myÞ=sy are
new random processes, we have Ruu¼ rxx and Rqq¼ ryy.
From Equations 37 or 39 similar relations between the
normalized autocovariance functions of the output and the
input of the linear system are obtained shown below only
for the discrete-time case (for the continuous-time, use t
instead of k):

ryyðkÞ¼hðkÞ � hð�kÞ � rxxðkÞ: ð42Þ

A monotonically decreasing autocorrelation or autoco-
variance may be obtained (e.g., Fig. 8a), when, for exam-
ple, a white noise is applied at the input of a system that
has a monotonically decreasing impulse response (e.g., of a
first-order system or a second-order overdamped system).
As an example, apply a zero-mean white noise to a system
that has an impulse response equal to e�at

‘

ðtÞ, where
‘

ðtÞ
is the Heaviside step function (

‘

ðtÞ¼ 1, t 	 0 and
‘

ðtÞ¼ 0,
to0). From Equation 37 this system’s output random sig-
nal will have an autocorrelation that is

RyyðtÞ¼ e�at
a

ðtÞ � eat
a

ð�tÞ � dðtÞ¼
e�ajtj

8
: ð43Þ

This autocorrelation has its peak at t¼ 0 and decays
exponentially on both sides of the time shift axis, qualita-
tively following the shape seen in Fig. 8a. On the other
hand, an oscillatory autocorrelation or autocovariance, as
seen in Fig. 8b, may be obtained when the impulse re-
sponse h(t) is oscillatory, which may occur, for example, in
a second-order underdamped system that would have an
impulse response hðtÞ¼ e�at cosðo0tÞ

‘

ðtÞ.

4. CROSS-CORRELATION BETWEEN TWO STATIONARY
RANDOM PROCESSES

The presentation up to now was developed for both the
continuous-time and discrete-time cases. From now on
the expressions for the discrete-time case will only be
presented.

4.1. Basic Definitions

Two signals are often recorded in an experiment from dif-
ferent parts of a system because an interest exists in an-
alyzing if they are associated with each other. This
association could develop from an anatomical coupling

270 AUTOCORRELATION AND CROSSCORRELATION METHODS



(e.g., two interconnected sites in the brain (17)) or a phys-
iological coupling between the two recorded signals (e.g.,
heart rate variability and respiration (18)). On the other
hand, they could be independent because no anatomical
and physiological link exists between the two signals.
Start with a formal definition of independence of two ran-
dom processes X(n) and Y(n).

Two random processes X(n) and Y(n) are independent
when any set of random variables fXðn1Þ;Xðn2Þ; . . . ;XðnNÞg

taken from XðnÞ is independent of another set of random
variables fYðn01Þ;Yðn

0
2Þ; . . . ;Yðn

0
MÞg taken from YðnÞ. Note

that the time instants at which the random variables are
defined from each random process are taken arbitrarily, as
indicated by the set of integers ni, i¼ 1; 2; . . . ;N and n0i,
i¼ 1; 2; . . . ;M, with N and M being arbitrary positive in-
tegers. This definition may be useful when conceptually it
is known beforehand that the two systems that generate
X(n) and Y(n) are totally uncoupled. However, in practice,
usually no a priori knowledge about the systems exists
and the objective is to discover if they are coupled, which
means that we want to study the possible association or
coupling of the two systems based on their respective out-
put signals x(n) and y(n). For this purpose, the definition of
independence is unfeasible to test in practice and one has
to rely on concepts of association based on second-order
moments.

In the same way as the correlation coefficient quantifies
the degree of linear association between two random vari-
ables, the cross-correlation and the cross-covariance quan-
tify the degree of linear association between two random
processes X(n) and Y(n). Their cross-correlation is defined
as:

RxyðkÞ¼E½Xðnþ kÞ � YðnÞ�; ð44Þ

and their cross-covariance as

CxyðkÞ¼E½ðXðnþ kÞ � mxÞ � ðYðnÞ � myÞ�

¼RxyðkÞ � mx=my:
ð45Þ

It should be noted that some books or papers define the
cross-correlation and cross-covariance as RxyðkÞ¼E½XðnÞ �
Yðnþ kÞ� and CxyðkÞ¼E½ðXðnÞ � mxÞ � ðYðnþ kÞ � myÞ�, which
are time-reversed versions of the definitions above Equa-
tions 44 and 45. The distinction is clearly important when
viewing a cross-correlation graph between two experimen-
tally recorded signals x(n) and y(n), coming from random
processes X(n) and Y(n), respectively. A peak at a positive
time shift k according to one definition would appear at a
negative time shift —k in the alternative definition. There-
fore, when using a signal processing software package or
when reading a scientific text, the reader should always
verify how the cross-correlation was defined. In Matlab
(MathWorks, Inc.), a very popular software tool for signal
processing, the commands xcorr(x,y) and xcov(x,y) use the
same conventions as in Equations 44 and 45.

Similarly to what was said before for the autocorrela-
tion definitions, texts on time series analysis define cross-

correlation as the normalized cross-covariance:

rxyðkÞ ¼
CxyðkÞ

sxsy
¼E
ðXðnþkÞ � mxÞ

sx
�
ðYðnÞ � myÞ

sy

� �

ð46Þ

where sx and sy are the standard deviations of the two
random processes X(n) and Y(n), respectively.

4.2. Basic Properties

As Xðnþ kÞ � YðnÞ is in general different from

½Xðn� kÞ � YðnÞ�, the cross-correlation and the cross-
covariance have a more subtle symmetry property than
the autocorrelation and autocovariance:

RxyðkÞ¼Ryxð�kÞ¼E½Yðn� kÞ � XðnÞ�: ð47Þ

It should be noted that the time argument in Ryxð�kÞ is
negative and the order xy is changed to yx. For the cross-
covariance, a similar symmetry relation applies:

CxyðkÞ¼Cyxð�kÞ ð48Þ

and

r
xy
ðkÞ¼ ryxð�kÞ: ð49Þ

For the autocorrelation and autocovariance, the peak
occurs at the origin, as given by the properties in Equa-
tions 19 and 20. However, for the crossed moments, the
peak may occur at any time shift value, with the following
inequalities being valid:

jRxyðkÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rxxð0ÞRyyð0Þ
p

ð50Þ

jCxyðkÞj � sxsy ð51Þ

jrxyðkÞj � 1: ð52Þ

Finally, two discrete-time ergodic random processes
X(n) and Y(n) without a periodic component will satisfy
the following:

lim
jkj!1

RxyðkÞ¼ mxmy ð53Þ

and

lim
jkj!1

CxyðkÞ¼ 0; ð54Þ

with similar results being valid for continuous time. These
limit results mean that the ‘‘effect’’ of a random variable
taken from process X on a random variable taken from
process Y decreases as the two random variables are taken
farther apart. In the limit they become uncorrelated.

4.3. Independent and Uncorrelated Random Processes

When two random processes X(n) and Y(n) are indepen-
dent, their cross-covariance is always equal to 0 for any
time shift, and hence the autocorrelation is equal to the
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product of the two means:

CxyðkÞ¼ 0 8k ð55Þ

and

RxyðkÞ¼ mxmy 8k: ð56Þ

Two random processes that satisfy the two expressions
above are called uncorrelated (10,15) whether they are
independent or not. In practical applications, one usually
has no way to test for the independence of two random
processes, but it is feasible to test if they are correlated or
not. Note that the term uncorrelated may be misleading
because the cross-correlation itself is not zero (unless one
of the mean values is zero, when the processes are called
orthogonal), but the cross-covariance is.

Two independent random processes are always uncor-
related, but the reverse is not necessarily true. Two ran-
dom processes may be uncorrelated (i.e., have zero
cross-covariance) but still be statistically dependent, be-
cause other probabilistic quantifiers (e.g., higher-order
central moments (third, fourth, etc.)), will not be zero.
However, for Gaussian (or normal) random processes, a
one-to-one correspondence exists between independence
and uncorrelatedness (10). This special property is
valid for Gaussian random processes because they are
specified entirely by the mean and second moments (au-
tocovariance function for a single random process
and cross-covariance for the joint distribution of two ran-
dom processes).

4.4. Simple Model of Delayed and Amplitude-Scaled Random
Signal

In some biomedical applications, the objective is to esti-
mate the delay between two random signals. For example,
the signals may be the arterial pressure and cerebral
blood flow velocity for the study of cerebral autoregula-
tion, or EMGs from different muscles for the study of
tremor (19). The simplest model relating the two signals is
yðnÞ¼ a � xðn� LÞ where a 2 R, and L 2 Z, which means
that y is an amplitude-scaled and delayed (for L > 0) ver-
sion of x. From Equation 46 rxyðkÞ will have either a max-
imum peak equal to 1 (if a > 0) or a trough equal to �1 (if
ao0) located at time shift k¼ � L. Hence, peak location in
the time axis of the cross-covariance (or cross-correlation)
indicates the delay value.

A slightly more realistic model in practical applications
assumes that one signal is a delayed and scaled version of
another but with an extraneous additive noise:

yðnÞ¼ axðn� LÞþwðnÞ: ð57Þ

In this model, w(n) is a random signal caused by exter-
nal interference noise or intrinsic biological noise that
cannot be controlled or measured. Usually, one can as-
sume that x(n) and w(n) are signals from uncorrelated or
independent random processes X(n) and W(n). Let us de-
termine rxyðkÞ assuming access to X(n) and Y(n). From

Equation 45,

CxyðkÞ¼E½ðXðnþkÞ � mxÞ � ðaðXðn� LÞ � mxÞ�

þE½ðXðnþ kÞ � mxÞ � ðWðnÞ � mwÞ�; ð58Þ

but the last term is zero because X(n) and W(n) are un-
correlated. Hence,

CxyðkÞ¼ aCxxðkþLÞ: ð59Þ

As CxxðkþLÞ attains its peak value when k¼ � L (i.e.,
when the argument ðkþLÞ is zero) this provides a very
practical method to estimate the delay between two ran-
dom signals: Find the time-shift value where the cross-co-
variance has a clear peak. If an additional objective is to
estimate the amplitude-scaling parameter a, it may be
achieved by dividing the peak value of the cross-covari-
ance by s2

x (see Equation 59).
Additionally, from Equations 46 and 59:

rxyðkÞ¼
aCxxðkþLÞ

sxsy
: ð60Þ

To find sy, we remember that Cyyð0Þ¼ s2
y from Equation

12. From Equation 57 we have

Cyyð0Þ¼E½aðXðn� LÞ � mxÞ � aðXðn� LÞ � mxÞ�

þE½ðWðnÞ � mwÞ � ðWðnÞ � mwÞ�; ð61Þ

where again we used the fact that X(n) and W(n) are un-
correlated. Therefore,

Cyyð0Þ¼ a2Cxxð0ÞþCwwð0Þ¼ a2s2
x þ s2

w; ð62Þ

and therefore

rxyðkÞ¼
aCxxðkþLÞ

sx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2s2
x þ s2

w

p : ð63Þ

When k¼ � L, CxxðkþLÞ will reach its peak value equal
to s2

x, which means that rxyðkÞ will have a peak at k¼ � L
equal to

rxyð�LÞ¼
asx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2s2
x þ s2

w

p ¼
a
jaj

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
s2

w

a2s2
x

q

:
ð64Þ

Equation 64 is consistent with the case in which no
noise W(n) ðs2

w¼ 0Þ exists because the peak in rxyðkÞ will
equal þ 1 or � 1, if a is positive or negative, respectively.
From Equation 64, when the noise variance s2

w increases,
the peak in rxyðkÞ will decrease in absolute value, but will
still occur at time shift k¼ � L. Within the context of this
example, another way of interpreting the peak value in
the normalized cross-covariance rxyðkÞ is by asking what
fraction Gx!y of Y is because of X in Equation 57, meaning
the ratio of the standard deviation of the term aX(n�L) to
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the total standard deviation in Y(n):

Gx!y¼
jajsx

sy
: ð65Þ

From Equation 60

rxyð�LÞ¼
asx

sy
; ð66Þ

and from Equations 65 and 66 it is concluded that the
peak size (absolute peak value) in the normalized cross-
covariance indicates the fraction of Y because of the ran-
dom process X:

jrxyð�LÞj ¼Gx!y; ð67Þ

which means that when the deleterious effect of the noise
W increases (i.e., when its variance increases), the contri-
bution of X to Y decreases, which by Equations 64 and 67
is reflected in a decrease in the size of the peak in rxyðkÞ.

The derivation given above showed that the peak in the
cross-covariance gives an estimate of the delay between
two random signals linked by model Equation 57 and that
the amplitude-scaling parameter may also be estimated.

5. CROSS-CORRELATION BETWEEN THE RANDOM INPUT
AND OUTPUT OF A LINEAR SYSTEM

If a discrete-time linear system has an impulse response
h(n) and a random process X(n) with an autocorrelation
Rxx(k) is applied at its input, the cross-correlation between
the input and the output processes will be (15):

RxyðkÞ¼hð�kÞ �RxxðkÞ; ð68Þ

and if the input is white the result becomes RxyðkÞ¼hð�kÞ.
The Fourier Transform of RxyðkÞ is the cross power spec-

trum Sxyðe
jOÞ and from Equation 68 and the properties of

the Fourier transform an important relation is found:

Sxyðe
jOÞ¼H�ðejOÞ � Sxxðe

jOÞ: ð69Þ

The results in Equations 68 and 69 are frequently used in
biological system identification, when the system linearity
may hold. Therefore, if the input signal is white, one may
obtain an estimate of Rxy(k) from the measurement of the
input and output signals. Following Equation 68 the only
thing to do is invert the time axis (what is negative becomes
positive, and vice-versa) to get an estimate of the impulse
response h(k). In the case of nonwhite input, it is better to
use Equation 69 to obtain an estimate of HðejOÞ by dividing
S�xyðe

jOÞ by Sxxðe
jOÞ (4,21) and then obtain the estimated im-

pulse response by inverse Fourier transform.

5.1. Common Input

Let us assume that signals x and y, recorded from
two points in a given biological system, are used to
compute an estimate of Rxy(k). Let us also assume that a

clear peak appears around k¼ � 10. One interpretation
would be that signal x ‘‘caused’’ signal y, with an average
delay of 10, because signal x passed through some
equivalent (yet unknown) sub-system to generate signal
y, and Rxy(k) would follow from Equation 68. However, in
biological systems, one notable example being the nervous
system, one should never discard the possibility of a com-
mon source exerting effects on two subsystems whose
outputs are the measured signals x and y. This situation
is depicted in Fig. 9a, where the common input is a ran-
dom process U that is applied at the inputs of two subsys-
tems, with impulse responses h1 and h2. In many cases,
only the outputs of each of the subsystems X and Y
(Fig. 9a) can be recorded, and all the analyses are
based on their relationships. Working in discrete time,
the cross-correlation between the two output random pro-
cesses may be written as a function of the two impulse
responses as

RxyðkÞ¼h1ðkÞ � h2ð�kÞ � RuuðkÞ; ð70Þ

which is simplified if the common input is white:

RxyðkÞ¼h1ðkÞ � h2ð�kÞ: ð71Þ

Figure 9b shows an example of a cross-correlation of
the outputs of two linear systems that had the same
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Figure 9. (a) Schematic of a common input U to two linear sys-
tems with impulse responses h1 and h2, the first generating the
output X and the second the output Y. (b) Cross-correlation be-
tween the two outputs X and Y of a computer simulation of the
schematic in (a). The cross-correlation samples were joined by
straight lines to improve the visualization. Without additional
knowledge, this cross-correlation could have come from a system
with input x and output y or from two systems with a common
input, as was the case here.
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random signal applied to their inputs. Without prior
information (e.g., on the possible existence of a common
input) or additional knowledge (e.g., of the impulse re-
sponse of one of the systems and Ruu(k)) it would certainly
be difficult to interpret such a cross-correlation.

An example from the biomedical field shall illustrate a
case where the existence of a common random input was
hypothesized based on empirically obtained cross-covari-
ances. The experiments consisted of evoking spinal cord
reflexes bilaterally and simultaneously in the legs of each
subject, as depicted in Fig. 10. A single electrical stimulus,
applied to the right or left leg, would fire an action poten-
tial in some of the sensory nerve fibers situated under the
stimulating electrodes (st in Fig. 10). The action potentials
would travel to the spinal cord (indicated by the upward
arrows) and activate a set of motoneurons (represented by
circles in a box). The axons of these motoneurons would
conduct action potentials to a leg muscle, indicated by
downward arrows in Fig. 10. The recorded waveform from
the muscle (shown either to the left or right of Fig. 10) is
the so-called H reflex. Its peak-to-peak amplitude is of in-
terest, being indicated as x for the left leg reflex waveform
and y for the right leg waveform in Fig. 10. The experi-
mental setup included two stimulators (indicated as st in
Fig. 10) that applied simultaneous trains of 500 rectan-
gular electrical stimuli at 1 per second to the two legs. If
the stimulus pulses in the trains are numbered as n¼ 0,
n¼ 1; . . . ;n¼N (the authors used N¼ 500), the respective
sequences of H reflex amplitudes recorded on each side
will be xð0Þ; xð1Þ; . . . ; xðNÞ and yð0Þ; yð1Þ; . . . ; yðNÞ, as de-
picted in the inset at the lower right side of Fig. 10. The
two sequences of reflex amplitudes were analyzed by the
cross-covariance function (22).

Each reflex peak-to-peak amplitude depends on the up-
coming sensory activity discharged by each stimulus and
also on random inputs from the spinal cord that act on the
motoneurons. In Fig. 10, a ‘‘U?’’ indicates a hypothesized
common input random signal that would modulate syn-
chronously the reflexes from the two sides of the spinal
cord. The peak-to-peak amplitudes of the right- and left-
side H reflexes to a train of 500 bilateral stimuli were
measured in real time and stored as discrete-time signals
x and y. Initial experiments had shown that a unilateral
stimulus only affected the same side of the spinal cord.
This finding meant that any statistically significant peak
in the cross-covariance of x and y could be attributed to a
common input. The first 10 reflex amplitudes in each sig-
nal were discarded to avoid the transient (nonstationarity)
that occurs at the start of the stimulation.

Data from a subject are shown in Fig. 11, the first 51
H-reflex amplitude values shown in Fig. 11a for the right
leg, and the corresponding simultaneous H reflex ampli-
tudes in Fig. 11b for the left leg (R. A. Mezzarane and A. F.
Kohn, unpublished data). In both, a horizontal line shows
the respective mean value computed from all the 490 sam-
ples of each signal. A simple visual analysis of the data
probably tells us close to nothing about how the reflex
amplitudes vary and if the two sides fluctuate together to
some degree. Such quantitative questions may be an-
swered by the autocovariance and cross-covariance func-
tions. The right- and left-leg H-reflex amplitude normali-
zed autocovariances, computed according to Equation 15,
are shown in Fig. 12a and 12b, respectively. The value at
time shift 0 is 1, as expected from the normalization. Both
autocovariances show that for small time shifts, some
degree of correlation exists between the samples because
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Figure 10. Experimental setup to elicit and record
bilateral reflexes in human legs. Each stimulus ap-
plied at the points marked st causes upward-prop-
agating action potentials that activate a certain
number of motoneurons (circles in a box). A hypoth-
esized common random input to both sides is indi-
cated by ‘‘U?’’. The reflex responses travel down the
nerves located on each leg and cause each calf mus-
cle to fire a compound action potential, which is the
so-called H reflex. The amplitudes x and y of the re-
flexes on each side are measured for each stimulus.
Actually, a bilateral train of 500 stimuli is applied
and the corresponding reflex amplitudes x(n) and
y(n) are measured, for n¼0; 1; . . . ;499, as sketched
in the inset in the lower corner. Later, the two sets of
reflex amplitudes are analyzed by auto and cross-
covariance.
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the autocovariance values are above the upper level of a
95% confidence interval shown in Fig. 12 (see subsection
Hypothesis testing). This fact supports the hypothesis
that randomly varying neural inputs exists in the spinal
cord that modulate the excitability of the reflex circuits.
As the autocovariance in Fig. 12b decays much slower
than that in Fig. 12a, it suggests that the two sides re-
ceive different randomly varying inputs. The normalized
cross-covariance, computed according to Equation 46, is
seen in Fig. 13. Many cross-covariance samples around
k¼ 0 are above the upper level of a 95% confidence in-
terval (see subsection Hypothesis testing), which sug-
gests a considerable degree of correlation between the
reflex amplitudes recorded from both legs of the subject.
The decay on both sides of the cross-covariance in Fig. 13
could be because of the autocovariances of the two sig-
nals (see Fig. 12), but this issue will only be treated la-
ter. Results such as those in Fig. 13, also found in other
subjects (22), suggested the existence of common inputs
acting on sets of motoneurons at both sides of the spinal
cord. However, as the peak of the cross-covariance was
lower than 1 and as the autocovariances were different
bilaterally, it can be stated that each side receives com-
mon sources to both sides plus random inputs that are
uncorrelated with the other side’s inputs. Experiments
in cats are being pursued, with the help of the cross-
covariance analysis, to unravel the neural sources of
the random inputs found to act bilaterally in the spinal
cord (23).

6. ESTIMATION AND HYPOTHESIS TESTING FOR
AUTOCORRELATION AND CROSS-CORRELATION

This section will focus solely on discrete-time random sig-
nals because, today, the signal processing techniques are
almost all realized in discrete-time in very fast computers.

If a priori knowledge about the stationarity of the ran-
dom process exists a test should be applied for stationarity
(4). If a trend of no physiological interest is discovered in
the data, it may be removed by linear or nonlinear regres-
sion. After a stationary signal is obtained, then the prob-
lem is to estimate first and second moments as presented
in the previous sections.

Let us assume a stationary signal x(n) is known for
n¼ 0; 1; . . . ;N � 1. Any estimate YðxðnÞÞ based on this sig-
nal would have to present some desirable properties, de-
rived from its corresponding estimator YðXðnÞÞ, such as
unbiasedness and consistency (15). Note that an estimate
is a particular value (or a set of values) of the estimator
when a given sample function x(n) is used instead of the
whole process X(n) (which is what happens in practice).
For an unbiased estimator YðXðnÞÞ, its expected value is
equal to the actual value being estimated y:

E½YðXðnÞÞ� ¼ y: ð72Þ

For example, if we want to estimate the mean mx of the
process X(n) using �x Equation 2, the unbiasedness means
that the expected value of the estimator has to equal mx. It
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Figure 11. The first 51 samples of two time series y(n) and
x(n) representing the simultaneously-measured H-reflex
amplitudes from the right (a) and left (b) legs in a subject. The
horizontal lines indicate the mean values of each complete series.
The stimulation rate was 1 Hz. Ordinates are in mV. (This figure
is available in full color at http://www.mrw.interscience.wiley.
com/ebe.)
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Figure 12. The respective autocovariances of the signals shown
in Fig. 11. The autocovariance in (a) decays faster to the confi-
dence interval than that in (b). The two horizontal lines represent
a 95% confidence interval. (This figure is available in full color at
http://www.mrw.interscience.wiley.com/ebe.)
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is easy to show that the finite average ½Xð0Þþ
Xð1Þ þ � � � þXðN � 1Þ�=N of a stationary process is an un-
biased estimator of the expected value of the process:

E½YðXðnÞÞ� ¼E
1

N

X

N�1

n¼ 0

XðnÞ

" #

¼
1

N

X

N�1

n¼ 0

E½XðnÞ�

¼
1

N

X

N�1

n¼ 0

mx¼ mx: ð73Þ

If a given estimator is unbiased, it still does not assure
its usefulness, because if its variance is high it means that
for a given signal x(n) - a single sample function of the
process X(n) - the value of YðxðnÞÞ may be quite far from
the actual value y. Therefore, a desirable property of an
unbiased estimator is that its variance tends to 0 as
the number of samples N tends to 1, a property called
consistency:

s2
Y¼E½ðYðXðnÞÞ � yÞ2� !

N!1
0: ð74Þ

Returning to the unbiased mean estimator Equation 2,
let us check its consistency:

s2
Y¼E½ðYðXðnÞÞ � mxÞ

2
�

¼E
1

N

X

N�1

n¼ 0

ðXðnÞ � mxÞ

 !2
2

4

3

5; ð75Þ

which, after some manipulations (15), gives:

s2
Y¼

1

N

X

N�1

k¼�Nþ 1

1�
jkj

N

� �

� CxxðkÞ: ð76Þ

From Equation 23 it is concluded that the mean esti-
mator is consistent. It is interesting to observe that the
variance of the mean estimator depends on the autocovari-
ance of the signal and not only on the number of samples,
which is because of the statistical dependence between the
samples of the signal, quite contrary to what happens in
conventional statistics, where the samples are i.i.d..

6.1. Estimation of Autocorrelation and Autocovariance

Which estimator should be used for the autocorrelation of
a process X(n)? Two slightly different estimators will be
presented and their properties verified. Both are much
used in practice and are part of the options of the Matlab
command xcorr.

The first estimator will be called the unbiased autocor-
relation estimator and defined as

R̂xx;uðkÞ¼
1

N � jkj

X

N�1�jkj

n¼ 0

Xðnþ jkjÞXðnÞ;

jkj � N � 1:

ð77Þ

The basic operations are sample-to-sample multiplica-
tions of two time-shifted versions of the process and arith-
metic average of the resulting samples, which seems to be
a reasonable approximation to Equation 13. To confirm
that this estimator is indeed unbiased, its expected value
shall be determined:

E½R̂xx;uðkÞ� ¼
1

N � jkj

X

N�1�jkj

n¼ 0

E½Xðnþ jkjÞXðnÞ�;

jkj � N � 1;

ð78Þ

and from Equations 13 and 16 it can be concluded that the
estimator is indeed unbiased (i.e., E½R̂xx;uðkÞ� ¼RxxðkÞ). It is
more difficult to verify consistency, and the reader is re-
ferred to Therrien (15). For a Gaussian process X(n), it can
be shown that the variance indeed tends to 0 for N!1,
which is a good approximation for more general random
processes. Therefore, Equation 77 gives us a consistent
estimator of the autocorrelation. When applying Equation
77 in practice, the available signal x(n), n¼ 0; 1; . . . ;N � 1,
is used instead of X(n) giving a sequence of 2N � 1 values
R̂xx;uðkÞ.

The unbiased autocovariance estimator is similarly de-
fined as

Ĉxx;uðkÞ¼
1

N � jkj

X

N�1�jkj

n¼ 0

ðXðnþ jkjÞ � �xÞ � ðXðnÞ � �xÞ;

jkj � N � 1;

ð79Þ
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Figure 13. Cross-covariance between the two signals with 490
bilateral reflexes shown partially in Fig 11. Only the time shifts
near the origin are shown here because they are the most reliable.
The two horizontal lines represent a 95% confidence interval.
(This figure is available in full color at http://www.mrw.
interscience.wiley.com/ebe.)
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where �x is given by Equation 2. Similarly, Ĉxx;uðkÞ is a
consistent estimator of the autocovariance.

Nevertheless, one of the problems with these two esti-
mators defined in Equations 77 and 79 is that they may
not obey Equations 19, 20 or the positive semi-definite
property (14,15).

Therefore, other estimators are defined, such as the bi-
ased autocorrelation and autocovariance estimators
R̂xx;bðkÞ and Ĉxx;bðkÞ

R̂xx;bðkÞ¼
1

N

X

N�1�jkj

n¼ 0

ðXðnþ jkjÞXðnÞ; jkj � N � 1 ð80Þ

and

Ĉxx;bðkÞ¼
1

N

X

N�1�jkj

n¼ 0

ðXðnþ jkjÞ � �xÞ � ðXðnÞ � �xÞ;

jkj � N � 1: ð81Þ

The only difference between Equations 77 and 80, or
Equations 79 and 81 is the denominator, which means
that R̂xx;bðkÞ and Ĉxx;bðkÞ are biased estimators. The zero
padding used in the time-shifted versions of signal x(n) in
Fig. 4b–d may be interpreted as the cause of the bias of the
estimators in Equations 80 and 81 as the zero samples do
not contribute to the computations in the sum but are
counted in the denominator N. The bias is defined as the
expected value of an estimator minus the actual value,
and for these two biased estimators the expressions are:

Bias½R̂xx;bðkÞ� ¼ �
jkj

N
RxxðkÞ; jkj � N � 1 ð82Þ

and

Bias½Ĉxx;bðkÞ�¼ �
jkj

N
CxxðkÞ; jkj � N � 1: ð83Þ

Nevertheless, when N!1, the expected values of
R̂xx;bðkÞ and Ĉxx;bðkÞ equal the theoretical autocorrelation
and autocovariance (i.e., the estimators are asymptotically
unbiased). Their consistency follows from the consistency
of the unbiased estimators. Besides these desirable prop-
erties, it can be shown that these two estimators obey
Equations 19 and 20 and are always positive semi-definite
(14,15).

The question is then, which of the two estimators, the
unbiased or the biased, should be choosen? Usually, that
choice is less critical than the choice of the maximum
value of k used in the computation of the autocorrelation
or autocovariance. Indeed, for large k the errors when us-
ing Equations 80 and 81 are large because of the bias, as
seen from Equations 82 and 83, whereas the errors asso-
ciated with Equations 77 and 79 are large because of vari-
ance of the estimates, due to the small value of the
denominator N � jkj in the formulas. Therefore, the user
should try to limit the values of jkj to as low a value
as appropriate for the application, for example, jkj � N=10
or jkj � N=4, because near k¼ 0 the estimates have the

highest reliability. On the other hand, if the estimated
autocorrelation or autocovariance will be Fourier-trans-
formed to provide an estimate of a power spectrum,
then the biased autocorrelation or autocovariance estima-
tors should be chosen to assure a non-negative power
spectrum.

For completeness purposes, the normalized autocovari-
ance estimators are given below. The unbiased estimator
is:

r̂xx;uðkÞ¼
Ĉxx;uðkÞ

Ĉxx;uð0Þ
; jkj � N � 1; ð84Þ

where r̂xx;uð0Þ¼ 1. An alternative expression should be
employed if the user computes first Ĉxx;uðkÞ and then di-
vides it by the variance estimate ŝ2

x , which is usually the
unbiased estimate in most computer packages:

r̂xx;uðkÞ¼
N

N � 1

� �

Ĉxx;uðkÞ

ŝ2
x

; jkj � N � 1: ð85Þ

Finally, the biased normalized autocovariance estimator
is:

r̂xx;bðkÞ¼
Ĉxx;bðkÞ

Ĉxx;bð0Þ
; jkj � N � 1: ð86Þ

Assuming the available signal x(n) has N samples, all
the autocorrelation or autocovariance estimators pre-
sented above will have 2N � 1 samples.

An example of the use of Equation 84 was already pre-
sented in the subsection ‘‘Common input’’ above. The two
signals, right- and left-leg H-reflex amplitudes, had
N¼ 490 samples, but the unbiased normalized autocovari-
ances shown in Fig. 12 were only shown for jkj � 20. How-
ever, the values at the two extremes k¼ 
 489 (not shown)
surpassed 1, which is meaningless. As mentioned before,
the values for time shifts far away from the origin should
not be used for interpretation purposes. A more involved
way of computing the normalized autocovariance that
assures values within the range ½�1; 1� for all k can be
found on page 331 of Priestley’s text (14).

From a computational point of view, it is usually not
recommended to compute directly any of the estimators
given in this subsection, except for small N. As the auto-
correlation or autocovariance estimators are basically the
discrete-time convolutions of x(n) with xð�nÞ, the compu-
tations can be done very efficiently in the frequency do-
main using an FFT algorithm (16), with the usual care of
zero padding to convert a circular convolution to a linear
convolution. Of course, for the user of scientific packages
such as Matlab, this problem does not exist because each
command, such as xcorr and xcov, is already implemented
in a computationally efficient way.

6.2. Estimation of Cross-Correlation and Cross-Covariance

The concepts involved in the estimation of the cross-cor-
relation or the cross-covariance are analogous to those of
the autocorrelation and autocovariance presented in the
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previous section. An important difference, however, is that
the cross-correlation and cross-covariance do not have
even symmetry. The expressions for the unbiased and bi-
ased estimators of cross-correlation given below are in a
form appropriate for signals x(n) and y(n), both defined for
n¼ 0; 1; . . . ;N � 1. The unbiased estimator is

R̂xy;uðkÞ¼

1
N�jkj

PN�1�jkj
n¼ 0 Xðnþ kÞYðnÞ; 0 � k � N � 1

1
N�jkj

PN�1�jkj
n¼ 0 XðnÞYðnþ jkjÞ; �ðN � 1Þ � ko0;

8

<

:

ð87Þ

and the biased estimator is

R̂xy;bðkÞ¼

1
N

PN�1�jkj
n¼ 0 Xðnþ kÞYðnÞ; 0 � k � N � 1

1
Nj

PN�1�jkj
n¼ 0 XðnÞYðnþ jkjÞ; �ðN � 1Þ � ko0:

8

<

:

ð88Þ

In the definitions above, R̂xy;uðkÞ and R̂xy;bðkÞ will have
2N � 1 samples. Both expressions could be made more
general by having x(n) with N samples and y(n) with M
samples ðM 6¼ NÞ, resulting in a cross-correlation with
NþM � 1 samples, with k in the range ½�N;M�. However,
the reader should be cautioned that the outputs of algo-
rithms that were initially designed for equal-sized signals
may require some care. A suggestion is to check the out-
puts with simple artificially generated signals for which
the cross-correlation is easily determined or known.

The corresponding definitions of the unbiased and bi-
ased estimators of the cross-covariance, for two signals
with N samples each, are

Ĉxy;uðkÞ¼

1
N�jkj

PN�1�jkj
n¼ 0 ðXðnþ kÞ � �xÞðYðnÞ � �yÞ;

0 � k � N � 1

1
N�jkj

PN�1�jkj
n¼ 0 ðXðnÞ � �xÞðYðnþ jkjÞ � �yÞ;

�ðN � 1Þ � ko0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð89Þ

and

Ĉxy;bðkÞ¼

1
N

PN�1�jkj
n¼ 0 ðXðnþ kÞ � �xÞðYðnÞ � �yÞ;

0 � k � N � 1

1
N

PN�1�jkj
n¼ 0 ðXðnÞ � �xÞðYðnþ jkjÞ � �yÞ;

�ðN � 1Þ � ko0

8

>

>

>

>

>

<

>

>

>

>

>

:

; ð90Þ

where �x and �y are the means of the two processes X(n) and
Y(n). The normalized cross-covariance estimators are
given below with the � meaning either b or u (i.e., biased
or unbiased versions):

r̂xy;�ðkÞ¼
Ĉxy;�ðkÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ĉxy;�ð0Þ � Ĉyy;�ð0Þ
q : ð91Þ

If the user first computes Ĉxy;uðkÞ and then divides this
result by the product of the standard deviation estimates,
the factor N=ðN � 1Þ should be used in case the computer

package calculates the unbiased variance (standard devi-
ation) estimates

r̂xy;uðkÞ¼
N

N � 1

� �

Ĉxy;uðkÞ

ŝxŝy
; ð92Þ

which may be useful, for example, when using the Matlab
command xcov, because none of its options include the di-
rect computation of an unbiased and normalized cross-co-
variance between two signals x and y. The Equation 92 in
Matlab would be written as:

r̂xy;uðkÞ¼ xcovðx; y;unbiased’Þ

�N=ððN � 1Þ � stdðxÞ � stdðyÞÞ: ð93Þ

Note that Matlab will give r̂xy;uðkÞ (or other alternatives
of cross-covariance or cross-correlation) as a vector with
2N � 1 elements (e.g., with 979 points if N¼ 490) when
the two signals x and y have N samples. For plotting the
cross-covariance or cross-correlation computed by a soft-
ware package, the user may create the time shift axis k by
k¼ � ðN � 1Þ : ðN � 1Þ to assure the correct position of the
zero time shift value in the graph. In Matlab, the values of
k are computed automatically if the user makes [C,k]¼
xcov(x,y,‘unbiased’). If the sampling frequency fs is known
and the time shift axis should reflect continuous time cal-
ibration, then vector k should be divided by fs.

The Equation 93 was employed to generate Fig. 13,
which is the normalized unbiased estimate of the cross-
covariance between the reflex amplitudes of the right and
left legs of a subject, as described before.

Similarly to what was said before for the autocorrela-
tion and autocovariance, in practical applications only the
cross-covariance (or cross-correlation) samples nearer to
the origin k¼ 0 should be used for interpretation pur-
poses. This is because the increase in variance or bias in
the unbiased or biased cross-covariance or cross-correla-
tion estimates at large values of jkj.

6.3. Hypothesis Testing

One basic question when analyzing a given signal x(n) is if
it is white (i.e., if its autocovariance satisfies Equation 35.
The problem in practical applications is that the autoco-
variance computed from a sample function of a white-
noise process will be nonzero for k 6¼ 0, contrary to what
would be expected for a white signal. This problem is typ-
ical in statistics, and it may be shown that a 95% confi-
dence interval for testing the whiteness of a signal with N
samples is given by the bounds 
1:96=

ffiffiffiffiffi

N
p

(11) when ei-
ther of the normalized autocovariance estimators is used
Equation 86, or Equation 84 for k{N), which comes from
the fact that each autocovariance sample is asymptotically
normal or Gaussian with zero mean and unit variance,
and hence the range 71.96 corresponds to a probability of
0.95.

When two signals are measured from an experiment,
the first question usually is if the two have some correla-
tion or not. If they are independent or uncor-related, theo-
retically their cross-covariance is zero for all values of k.
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Again, in practice, this result is untenable as is exempli-
fied in Fig. 14, which shows the normalized cross-covari-
ance of two independently generated random signals x(n)
and y(n). Each computer-simulated signal, x(n) and y(n),
had N¼1000 samples and was generated independently
from the other by a filtering procedure applied on nor-
mally distributed random samples. It can be shown (11)
that under the hypothesis that two random signals are
white, a 95% confidence interval for testing their uncor-
relatedness is given by 
1:96=

ffiffiffiffiffi

N
p

when the normalized
cross-covariance formula Equation 91 is used, either for
the biased case or for the unbiased case if k{N. This con-
fidence interval is drawn in Fig. 14, even without knowing
beforehand if the signals are indeed white. Several peaks
in the cross-covariance oscillations are clearly outside the
confidence interval, which could initially be interpreted
as a statistical dependence between the two signals. How-
ever, this cannot be true because they were generated
independently. The problem with this apparent paradox is
that the cross-covariance is also under the influence of
each signal’s autocovariance.

One approach to the problem of testing the hypothesis
of independence of two arbitrary (nonwhite) signals is the
whitening of both signals before computing the cross-co-
variance (11). After the whitening, the 
1:96=

ffiffiffiffiffi

N
p

confi-
dence interval can be used. The whitening filters most
used in practice are inverse filters based either on auto-
regressive (AR) or autoregressive moving average (ARMA)
models. In the present example, two AR models shall be
obtained for each of the signals, first determining the
order by the Akaike information criterion (24) and then

estimating the AR models by the Burg method (25,26).
Each inverse filter is simply a moving average (MA) sys-
tem with coefficients equal to those of the denominator of
the transfer function of the respective all-pole estimated
AR model. Figure 15a shows the autocovariance of signal
x(n), which clearly indicates that x(n) is nonwhite, because
most samples at k 6¼ 0 are outside the confidence interval.
As N¼ 1000, the confidence interval is 76.2 � 10� 2,
which was drawn in Fig. 15a and 15b as two horizontal
lines. Figure 15b shows the autocovariance of the signal
xo(n) at the output of the respective inverse filter that has
x(n) at its input. Similarly, Fig. 16a shows the autocovari-
ance of signal y(n) and Fig. 16b the autocovariance of the
output yo(n) of the corresponding inverse filter that has
y(n) at its input. The two autocovariances in Fig. 15b and
Fig. 16b show that, except for the sample at k¼ 0, which is
equal to 1, the other samples stay within the confidence
band, so that the hypothesis of white xo(n) and yo(n) can be
accepted.

Next, the cross-covariance between xo(n) and yo(n) was
computed and is shown in Fig. 17. Now, practically all the
samples are contained in the confidence interval and the
hypothesis that the two random signals x(n) and y(n) are
uncorrelated (and independent, if they are Gaussian) can
be accepted. For the few samples outside the confidence
band, the user should use the fact that at each time shift k,
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Figure 14. Cross-covariance of two signals x(n) and y(n), which
were generated independently, with 1000 samples each. The
cross-covariance shows oscillations above a 95% confidence inter-
val indicated by the two horizontal lines, which would suggest a
correlation between the two signals, but this conclusion is false
because they were generated independently. (This figure is avail-
able in full color at http://www.mrw.interscience.wiley.com/ebe.)
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Figure 15. The autocovariance of signal x(n) that generated the
cross-covariance of Fig. 14 is shown in (a). It shows clearly that it
is not a white signal because many of its samples fall outside a
95% confidence interval (two horizontal lines around the horizon-
tal axis). (b) This signal was passed through an inverse filter
computed from an AR model fitted to x(n), producing a signal x0(n)
that can be accepted as white as all the autocovariance samples at
k 6¼ 0 are practically inside the 95% confidence interval. (This
figure is available in full color at http://www.mrw.interscience.
wiley.com/ebe.)
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5% of the times a cross-covariance value could exist out-
side the 95% confidence interval, for independent signals.
Besides this statistical argument, the biomedical user
should also consider if the time shifts associated with
samples outside the confidence band have some physio-
logical meaning. Additional issues on testing the hypoth-
esis of independency of nonwhite signals may be found in
the text by Brockwell and Davis (11).

Let us apply this approach to the bilateral reflex data
described in subsection ‘‘Common input.’’ Note that the
autocovariance functions computed from experimental
data, shown in Fig. 12, indicate that both signals are not
white because samples at k 6¼ 0 are outside the confidence
band. Therefore, to be able to properly test whether the
two sequences are correlated, the two sequences of reflex
amplitudes shall be whitened and the cross-covariance of
the corresponding whitened sequences computed. The re-
sult is shown in Fig. 18, where one can see that a sample
exists at zero time shift clearly out of the confidence in-
terval. The other samples are within the confidence limits,
except for two that are slightly above the upper limit line
and are of no statistical or physiological meaning.

From the result of this test the possibility that the wide
peak found in Fig. 13 is an artifact can be discarded and
one can feel rather confident that a common input acting

synchronously (peak at k¼ 0) on both sides of the spinal
cord indeed exists.

An alternative to the whitening approach is to
compute statistics based on surrogate data generated
from each of the two given signals x(n) and y(n) (27).
Each surrogate signal xi(n) derived from x(n), for example,
would have an amplitude spectrum jXiðe

jOÞj equal to
jXðejOÞj, but the phase would be randomized. Here
XðejOÞ¼DiscreteTimeFourierTransform½xðnÞ�. The phase
would be randomized with samples taken from a uniform
distribution between � p and p. The corresponding surro-
gate signal would be found by inverse Fourier Transform.
With this Monte Carlo approach (27), the user will have a
wider applicability of statistical methods than with the
whitening method. Also, in case high frequencies gener-
ated in the whitening approach cause some masking of a
genuine correlation between the signals, the surrogate
method is a good alternative.

Finally, returning to the problem of delay estimation
presented earlier, in section 4.4 it should be pointed out
that several related issues were not covered in this chap-
ter. For example, the standard deviation or confidence in-
terval of the estimated delay may be computed to
characterize the quality of a given estimate (4). A modi-
fied cross-covariance, based on a minimum least square
method, may optimize the estimation of the time delay
(20). Alternatively, the model may be different from Equa-
tion 57, (e.g., one of the signals is not exactly a delayed
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Figure 16. The autocovariance of signal y(n) that generated the
cross-covariance of Fig. 14 is shown in (a). It shows clearly that it
is not a white signal because many of its samples fall outside a
95% confidence interval (two horizontal lines around the horizon-
tal axis). (b) This signal was passed through an inverse filter
computed from an AR model fitted to y(n), producing a signal
y0(n) that can be accepted as white as all the autocovariance
samples at k 6¼ 0 are practically inside the 95% confidence inter-
val. (This figure is available in full color at http://www.mrw.
interscience.wiley.com/ebe.)
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Figure 17. The cross-covariance estimate of the white signals
x0ðnÞ and y0ðnÞ referred to in Figs. 15 and 16. The latter were ob-
tained by inverse filtering the nonwhite signals x(n) and y(n)
whose estimated cross-covariance is shown in Fig. 14. Here, it is
noted that all the samples fall within the 95% confidence interval
(two horizontal lines around the horizontal axis), which suggests
that the two signals x(n) and y(n) are indeed uncorrelated. (This
figure is available in full color at http://www.mrw.interscience.
wiley.com/ebe.)
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version of the other with added noise). One possible model
would be yðnÞ¼ aqðn� LÞþwðnÞ, where qðnÞ¼ xðnÞ � hðnÞ.
Here, h(n) is the impulse response of a linear system that
changes the available signal x(n) into q(n). The second
available signal, y(n), is a delayed and amplitude-scaled
version of q(n) with additive measurement noise. The con-
cepts presented in section 5 earlier can be applied to this
new model.

7. EXTENSIONS AND FURTHER APPLICATIONS

In spite of the widespread use of the autocorrelation and
cross-correlation functions in the biomedical sciences,
they have some intrinsic limitations. These limitations
should be understood so that more appropriate signal pro-
cessing tools may be employed or developed for the prob-
lem at hand. A few of the limitations of the auto and cross-
correlation functions will be mentioned below together
with some alternative signal processing tools that have
been presented in the literature.

The autocorrelation and cross-correlation should not be
applied to nonstationary random processes because the
results will be difficult to interpret and may induce the
user to errors. When the nonstationarity is because of a
varying mean value, a subtraction of the time-varying
mean will result in a wide-sense stationary random pro-
cess (and hence the autocorrelation and cross-correlation

analyses may be used). If the mean variation is linear, a
simple detrending operation will suffice. If the mean var-
ies periodically, a spectral analysis may indicate the func-
tion to be subtracted. If the nonstationarity is because of
time-varying moments of order higher than 1, it is more
difficult to transform the random process into a stationary
one. One of the approaches of dealing with these more
complicated cases is the extension of the ideas of deter-
ministic time-frequency analysis to random signals. An
example of the application of such an approach to EEG
signals may be found in Ref. 28.

When two stationary signals are, respectively, the in-
put and the output of a linear system, the cross-correlation
and the cross-spectrum presented above are very useful
tools. For example, if the input is (approximately) white,
the cross-correlation between the input and output pro-
vide us the impulse response of the system. A refinement
is the use of the coherence function, which is the cross-
spectrum divided by the square root of the product of the
two signal autospectra (11,21). The squared magnitude of
the coherence function is often used in biomedical signal
processing applications (29,30). However, when significant
mutual interactions exists between the two signals x and y,
as happens when two EEG signals are recorded from the
brain, it is very relevant to analyze the direction of the
influences (x! y; y! x). One approach described in the
literature is the partial directed coherence (31).

Several approaches have been proposed in the litera-
ture for studying nonlinear relations between signals.
However, each proposed method works better in a specific
experimental situation, contrary to the unique importance
of the cross-correlation for quantifying the linear associa-
tion between two random signals. The authors shall refer
briefly to some of the approaches described in the litera-
ture in what follows.

In the work of Meeren et al. (32), the objective was to
study nonlinear associations between different brain cor-
tical sites during seizures in rats. Initially, a nonlinear
correlation coefficient h2 was proposed as a way to quantify
nonlinear associations between two random variables, say
x and y. The coefficient h2

ð0 � h2 � 1Þ estimates the pro-
portion of the total variance in y that can be predicted on
the basis of x by means of a nonlinear regression of y on x
(32). To extend this relationship to signals y(n) and x(n),
the authors computed h2 for every desired time shift k
between y(n) and x(n), so that a function h2(k) was found.
A peak in h2(k) indicates a time lag between the two sig-
nals under analysis.

The concept of mutual information (33) from informa-
tion theory (34) has been used as a basis for alternative
measures of the statistical association between two sig-
nals. For each chosen delay value the mutual information
(MI) between the pairs of partitioned (binned) samples of
the two signals is computed (35). The MI is non-negative,
with MI¼ 0 meaning the two signals are independent, and
attains a maximum value when a deterministic relation
exists between the two signals. This maximum value is
given by � log2 e bits, where e is the precision of the bin-
ning procedure (e.g., for 20 bins, e¼ 0:05, and therefore
MI � 4:3219 bits). For example, Hoyer et al. (18) have em-
ployed such measures to better understand the statistical
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Figure 18. Cross-covariance computed from the whitened bi-
lateral reflex signals shown in Fig. 11. Their original cross-
covariance can be seen in Fig. 13. After whitening the two
signals, the new cross-covariance shown here indicates that a
statistically significant peak at time shift zero indeed exists. The
two horizontal lines represent a 95% confidence interval. (This fig-
ure is available in full color at http://www.mrw.interscience.wiley.
com/ebe.)
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structure of the heart rate variability of cardiac patients
and to evaluate the level of respiratory heart rate
modulation.

Higher-order cross-correlation functions have been
used in the Wiener–Volterra kernel approach to charac-
terize a nonlinear association between two biological sig-
nals (36,37).

Finally, the class of oscillatory biological systems has
received special attention in the literature with respect to
the quantification of the time relationships between dif-
ferent rhythmic signals. Many biological systems exist
that exhibit rhythmic activity, which may be synchronized
or entrained either to external signals or with another
subsystem of the same organism (38). As these oscillatory
(or perhaps chaotic) systems are usually highly nonlinear
and stochastic, specific methods have been proposed to
study their synchronization (39,40).
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