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Abstract

A vertebrate motoneuron receives an enormous amount of synaptic activity from descending pathways, from spinal
cord interneurons and directly from mechanoreceptor afferents. The intrinsic characteristics of the motoneuron will
determine how its output spike train will encode the activities of all its inputs. Therefore, the essence of the intrinsic
motoneuron characteristics should be well studied and modelled if the roles of the motoneuron as a processing or
encoding element are to be well understood. Mathematical models of motoneurons have been described in the
literature and tested mostly under static conditions. To increase the reality of the validation of such models, the
objective of the present work is to test a few selected models described in the literature using sinusoidal injected
current of different frequencies. The resulting frequency responses are compared with data available in the literature
from cat type F motoneurons. Discrepancies between some of the models’ responses and real motoneuron data
suggest that improvements are needed in the modelling of the afterhyperpolarization mechanism. © 2000 Elsevier
Science Ireland Ltd. All rights reserved.
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1. Introduction

The control of motor behaviour is accom-
plished by the coordinated action of a multitude
of neurons in the central nervous system, includ-
ing those in the cortex (e.g. primary motor, sup-
plementary motor, premotor, parietal), basal
ganglia, cerebellum, brainstem and spinal cord. A
motoneuron in the spinal cord receives an enor-

mous amount of synaptic input from the central
and peripheral nervous systems. It encodes the
incoming spike trains into an outflow of action
potentials that taken together with the spike
trains of the other motoneurons in the same nu-
cleus will determine how the target muscle will
contract. The encoding effected by a motoneuron
can be studied under static or dynamic conditions,
both being useful to characterise the motoneuron
behaviour. In terms of physiological actions, the
static behaviour is relevant for the determination
of, e.g. posture and prehension, while the dynamic* Corresponding author. Fax: +55-11-3818-5718.
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behaviour is important in locomotion, grabbing,
throwing, etc. A particular case of dynamic action
involves rhythmic movements, such as walking,
running, pedalling, swimming, chewing, tremor.
In these cases there is a rhythmic excitatory drive
acting on a motoneuron pool that causes the
motoneurons to fire rhythmic bursts that will
command rhythmic contractions of the target
muscle. In these sorts of behaviour, a study of the
response of the motoneurons to sinusoidal input
currents is warranted.

On the other hand, for studies on the neural
substrates of motor control it would be helpful to
have available a simulator of the corresponding
network of spinal cord motoneurons and in-
terneurons. Therefore, ‘good’ models of those
neurons are required, which means that any can-
didate model should pass several tests for its
validation. In spite of the importance of frequency
response analysis, the motoneuron models de-
scribed in the literature have not been validated
using sinusoidal input currents. Tests that have
been used in the literature for the validation of
motoneuron models include: f×I curve, action
potential and afterhyperpolarization (AHP) char-
acteristics, recruitment threshold, voltage tran-
sients for dendritic inputs, bistability, change in
firing rate due to trains of short input pulses. In
this work we present simulations of two rather
complex motoneuron models described in the lit-
erature (Traub, 1977; Booth et al., 1997) as well
as those of two simple models of the leaky inte-
grator type. The responses to two inputs are
analysed: a step current and a sinusoidal current
(superimposed on a step current). In the former
we study the adaptation time course and in the
latter we study the sinusoidal steady state re-
sponses. Cat motoneuron data published by Bald-
issera et al. (1984, 1998) and by Schwindt and
Crill (1984) are used as a reference for com-
parison.

2. Models chosen for evaluation by sinusoidal
inputs

The first model chosen for evaluation using
sinusoidal input signals is that of Traub (1977),

consisting of three dendritic compartments, a
soma compartment and an initial segment com-
partment. There is a slow K channel to represent
the calcium-dependent K channels found in mo-
toneurons. To speed up the computations we
merged the three dendritic compartments in a
single one so that the whole model is now de-
scribed by three compartments totalling ten ordi-
nary differential equations. The parameter values
were chosen so that the resulting neuronal model
would represent a type F motoneuron. Parameters
bq and gK.slow.tot were taken as 0.035 and 0.005 to
achieve a better approximation to real f×I curves
but still without altering other characteristics such
as rheobase. The second model we chose to test is
that of Booth et al. (1997), composed of a somatic
compartment and a dendritic compartment. The
former includes an N type Ca channel and a
Ca-dependent K channel, while the latter includes
N and L type Ca channels and a Ca-dependent K
channel. This model, to be referred simply as the
Booth model, is described by 11 ordinary differen-
tial equations. As this model has an active den-
drite, we decided to test also an equivalent model
with a passive dendrite, which we shall call Booth
PD model. The parameters for the passive den-
drite were derived from the full dendritic model
imposing resting conditions. This new model is
described by seven ordinary differential equations.
Both Booth models were simulated without de-
normalising the input current and the parameters.
It should be pointed out that Booth et al. (1997)
developed their model to represent turtle mo-
toneurons. In spite of this, we thought it was an
interesting model to test because its core is mostly
based on the biophysics and mathematical mod-
elling of cat motoneurons. An additional interest-
ing feature of this model is that its active channels
in the soma and dendrite provide a mechanism for
bistability, something found in cat and turtle (e.g.
motoneurons under certain experimental condi-
tions).

In addition to the three models described
above, which include a rather detailed description
of several ionic channels and a dendritic compart-
ment, we also decided to test a simple leaky
integrator model. Its parameter values were cho-
sen to approximate real motoneuron data:
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threshold=14.4 mV above membrane resting
potential, membrane time constant=5.0 ms.
These parameter values are typical of cat FF
type motoneurons (Zengel et al., 1985). When it
was noticed that the frequency response of this
model was quite different from that of real mo-
toneurons, we decided to test a leaky integrator
model with negative current feedback that
would generate an AHP similar to that found in
real motoneurons. For each action potential dis-
charged by the standard leaky integrator model,
a Dirac delta impulse is applied to a first order
lowpass linear system whose output is sub-
tracted from the input current to the leaky inte-
grator model. The same values for the
membrane time constant and threshold voltage
used in the simple leaky integrator were also
used for the leaky integrator with negative feed-
back. The AHP time constant was 20 ms and
the AHP peak amplitude for a single activation
was made equal to −3 mV, similar to values
described in real motoneurons. Additional simu-
lations of the leaky integrator with feedback in-
vestigated the effects of different AHP time
constants (5 and 30 ms) on the frequency re-
sponse. We took care to assure that each of
these models still had the same values for the
AHP peak amplitude (−3 mV), firing threshold
(14.4 mV) and membrane time constant (tm=5
ms). To achieve an AHP peak amplitude of −3
mV the peak of the negative feedback current (a
decreasing exponential signal) had a different
value for different AHP time constants. To our
knowledge, one of the first descriptions of such
a negative feedback modelling in the context of
an integrate and fire model was published by
Sokolove (1972), with the objective of represent-
ing an adaptation mechanism in crayfish stretch
receptors.

The steady state discharge rate of each mo-
toneuron model was adjusted to 60.0/s for the
adaptation simulations and to 52.0/s for the fre-
quency response simulations (by choosing ap-
propriate levels of the input step current), so
that the experimental data from Baldissera et al.
(1984) and Schwindt and Crill (1984) could be
used as references.

Specific programs in C language were devel-

oped for the simulation of all the models. The
differential equations were integrated using the
fourth order Runge-Kutta method, with a fixed
step size of 0.01 ms. The frequency responses
were estimated with the help of programs writ-
ten in the Matlab environment.

3. Method for obtaining the amplitude and phase
responses

The motoneuron models described in the pre-
vious section were tested with an input current
consisting of a sinusoidal signal superimposed
on a step signal. At the start of a simulation,
only the step current was applied until a steady
state firing rate of 52/s was reached. After that,
the sinusoidal current was injected superimposed
on the step current, thereby modulating the
firing rate of the motoneuron model. The ampli-
tude and phase of the firing rate modulations
for different input frequencies (1–30 Hz) yielded
the amplitude and phase response graphs.

The spike train analysis followed in essence
that described by Baldissera et al. (1984, 1998):
(a) each interspike interval was localised in time
as the midpoint between two consecutive spikes,
this time location normalised with respect to the
phase of the input sinusoid; (b) one cycle of the
input was divided into 72 bins and each inter-
spike interval time location was binned; (c) the
mean interspike interval in each bin was com-
puted and its inverse — a mean instantaneous
rate — was the value associated with that bin;
(d) a spline interpolation was applied to the cy-
cle histogram of the instantaneous rate found in
step (c); and (e) the fundamental component of
the FFT of the interpolated cycle histogram of
(d) gave the amplitude and phase of the re-
sponse for the specific input. When at least one
bin in the cycle histogram computed in (c) was
empty, a linear interpolation was employed
prior to the spline interpolation. Some of the
steps above are required because the raw cycle
histogram shows distortions, mainly when the
input peak amplitude is not small enough or the
modulating frequency is high with respect to the
basal frequency of the neuron (the neuron’s dis-
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charge rate when just the step current is applied).
The amplitude ranges of the sinusoidal modulat-
ing currents were smaller than in Baldissera et al.
(1984) to avoid excessive distortions in the his-
tograms. Typical sine amplitude to step current
amplitude ratios were from 1/50 to 1/2 for the
Booth and Traub models and from 1/200 to 1/10
for the leaky integrator models. Some ad-hoc
criteria were employed to eliminate cycle his-
tograms that were too distorted (e.g. when the
phase value for a larger amplitude of the sinu-
soidal input jumped with respect to the phase
values measured for smaller input amplitudes).
For the computation of the amplitude response or
gain, four different peak amplitudes of the input
sine functions were employed and the slope of the
curve defined by the corresponding amplitudes (of
the resulting fundamental frequency) yielded the
gain. The phase at each input frequency was
measured using the response to the smallest input
sine wave. Each analysed spike train had 10 000
action potentials. Before ending this section, it
should be emphasised that the cycle histograms
employed in the comparisons of the five models
with real motoneuron data are different from the
cycle histogram of spike density, which estimates
an intensity function of a point process and is a
sort of post-stimulus time histogram (where time
0 is, e.g. the upward zero crossing of the input
sine wave and the histogram is computed for the
duration of a sine period). For the purpose of
interpreting the effects of frequency modulated
spike trains on a target neurone, the cycle his-
togram of spike density is more relevant because
it conveys information on spike discharge proba-
bility in any desired time interval. A recent work
that illustrates the usage of the cycle histogram of
spike density can be found in Shimokawa et al.
(1999). On the other hand, the cycle histogram of
the instantaneous rate was used by Baldissera et
al. (1984) to quantify cat motoneuron behaviour
and is, therefore, important for motoneuron
model validation. Significant differences in ampli-
tude and/or phase responses of a motoneuron
model and real motoneurons obtained from the
cycle histogram of the instantaneous rate would
mean that improvements are required in the
model structure or parameter values.

4. Results

An initial simulation was run to study the
adaptation characteristics of each model as com-
pared with those of a real motoneuron. Each of
the three models (leaky integrator with feedback,
Booth and Traub) had an input step current
injected with an appropriate amplitude to yield a
steady state discharge rate of 60.0/s, which was
the steady state discharge rate of the cat motoneu-
ron that was reported by Schwindt and Crill
(1984).

The step response of each model is plotted in
Fig. 1 (top three graphs) showing the instanta-
neous rate as a function of time together with the
data from a real motoneuron. More specifically,
Fig. 1 shows, from top to bottom, the instanta-
neous rates for the leaky integrator model with
feedback (AHP time constant 20 ms), for the
Booth model, for Traub’s model, and for a cat
motoneuron (Schwindt and Crill, 1984).

The Booth model and the leaky integrator with
feedback (tAHP=20 ms) reach the steady state
discharge rate after about the third interspike
interval while Traub’s model is already at the
steady state rate at the second interspike interval
(i.e. almost no adaptation). On the other hand,
the real motoneuron reached the steady state dis-
charge rate at about the fifth interspike interval
following the input step current.

Fig. 1. Instantaneous frequency as a function of time for a step
current input. From top to bottom: leaky integrator with
feedback (tAHP=20 ms), Booth model, Traub model, and cat
motoneuron (data redrawn from Schwindt and Crill, 1984).
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Fig. 2. (a) Amplitude responses (in dB); and (b) phase re-
sponses (in degrees) of real motoneurons (solid line, redrawn
from Baldissera et al., 1984), and the following models: Booth
et al. (1997) (× ), Booth PD (�), Traub (1977) (dashed line,
small dashes with crosses), leaky integrator (dashed line, long
dashes), leaky integrator with negative feedback and AHP
time constant 20 ms (�).

occurring at about 6.3 Hz (i.e. the 3 dB point
frequency is around 6.3 Hz).

The amplitude response (or gain) curves from
the simulations (Fig. 2a) show that the leaky
integrator behaves rather poorly, as does the
Traub model. An improvement over the leaky
integrator was achieved by the introduction of the
negative feedback (measured values indicated by
circles), mimicking the after-hyperpolarization
found in motoneurons. However, the best fit of all
was obtained by either of the two versions of the
Booth model.

Fig. 3. (a) Amplitude responses (in dB); and (b) phase re-
sponses (in degrees) of three leaky integrator models, with
membrane time constant 5 ms, discharging at 52.0/s but with
different negative feedback time constants: 5 (short dashes), 20
(�) and 30 ms (longer dashes). Real motoneuron frequency
response in solid line (redrawn from Baldissera et al., 1984).

The amplitude response (or gain) and the phase
response graphs are seen in Fig. 2a and b, respec-
tively. The real motoneuron data were fitted by
Baldissera et al. (1984) using a proportional+
derivative system and this fit is shown in continu-
ous lines in Fig. 2 and in Fig. 3. Therefore, this
will be the golden standard we shall use to evalu-
ate the sinusoidal dynamic response of the five
motoneuron models we chose to test. The main
features of the real motoneuron data are the
increasing gain and phase advance for higher
frequencies, with a zero of the transfer function



D.G. Goroso et al. / BioSystems 58 (2000) 33–3938

The phase responses of both leaky integrator
models and Traub’s model (Fig. 2b) were quite in
error with respect to the real motoneuron data.
On the other hand, both versions of Booth’s
model gave a good fit. As the difference between
the two leaky integrator models is the negative
feedback, and it caused an improvement in the
model’s reality, we investigated if an increase of
the AHP time constant could improve the fitting.

Next we simulated two additional leaky integra-
tor models with negative feedback having AHP
time constants 5 and 30 ms. The smaller time
constant was made equal to the membrane time
constant in order to check if a leaky integrator
model with a simple negative reset following an
action potential would work well (this model
would be simpler to implement in a simulation
because the decay of the hyperpolarization would
be just the decay caused by the membrane time
constant).

The larger time constant value was chosen to be
still compatible with physiological data. Fig. 3
shows the gain and phase curves for three leaky
integrator models with negative feedback and
AHP time constants (tAHP) equal to 5, 20 and 30
ms. The relation between negative peak feedback
current and injected current was 0.53 for the
model with tAHP=5 ms (tm=tAHP), 0.21 for the
model with tAHP=30 ms, and 0.25 for the model
with tAHP=20 ms. Fig. 3 shows that the gain and
phase curves for tAHP=30 ms are more similar to
the data from Baldissera et al. (1984) than the
other curves (5 and 20 ms). The model with 5 ms
of AHP time constant showed almost no sign of
the feedback effect (in the frequency response
analysis) and behaved practically as a pure leaky
integrator.

For the sake of completeness, we also simulated
a leaky integrator model (without feedback) hav-
ing a larger membrane time constant, equal to 15
ms, more typical of pyramidal neurons in the
cortex. The same methodology as described be-
fore was used to determine the gain and phase
responses to sinusoidal input currents. The results
showed that the gain curve was quite near to that
found for the leaky integrator with 5 ms mem-
brane time constant. However, the phase curve
was much below that obtained for the 5 ms leaky

integrator, for example, at 15 Hz the phase was
17° below and at 25 Hz it was 29° below.

5. Discussion

Our search for a ‘good’ motoneuron model
actually started with an analysis of Traub’s model
(1977) as it appeared to include all the major
aspects needed to represent a motoneuron. When
the frequency response showed a poor perfor-
mance, we decided to test a more recent model
and chose the model by Booth et al. (1997), which
ended up giving good frequency responses.

An important question then arose: what
parameter values or what model sub-structure are
directly relevant in the Booth model to justify its
good dynamic performance for sinusoidal inputs?
And what has to be changed in the Traub model?
At the same time we were curious to see if a
simple leaky integrator model with realistic
parameter values would follow approximately the
motoneuron frequency response data. When the
results with the simple leaky integrator showed a
poor fit, we decided to test a leaky integrator
model with a negative feedback that generated an
AHP (a conspicuous finding in motoneurons).
The better results obtained using a negative feed-
back in the leaky integrator model indicated that
we should look at the way the AHP dynamics
were implemented in Traub’s and Booth’s model
to understand why the latter gave much better
results. Indeed, the proportional+derivative
model fitting of real motoneuron data (Baldissera
et al., 1984) suggests that an approximate transfer
function between input injected current and mo-
toneuron firing rate modulation would be (s+a)/
(s+b), with b�a. The step response of such a
system shows adaptation, something that certainly
the leaky integrator does not have and Traub’s
model has very little (Fig. 1). The leaky integrator
model with negative feedback showed increasing
levels of adaptation as the AHP time constant
was increased, and at the same time the fitting of
the frequency response curves improved. The
Booth model has a somewhat more pronounced
adaptation than Traub and at the same time has a
more elaborate description of the dynamics of the
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calcium dependent potassium channels. Neverthe-
less, it may well be that by a proper parameter
adjustment Traub’s model can exhibit a much
better frequency response. But one has to always
check if the resulting parameter values are realis-
tic and if other model behaviours are still within
the normal ranges.

One additional question raised by the simula-
tions was if the good frequency response charac-
teristics of the Booth model was due to the active
dendritic model employed. Our simulations
showed that an equivalent passive dendritic model
gave a similar frequency response. Hence, voltage-
dependent conductances in the dendrites are not
necessary for the motoneuron model to represent
well the gain and phase data described for real
motoneurons.

In terms of simpler models, if the only criterion
would be a reasonable fitting of the gain and
phase curves of real motoneurons, then the leaky
integrator with feedback having a higher AHP
time constant could be an adequate model. Never-
theless, its behaviour for other types of tests (not
covered here) would certainly fail and, therefore,
the choice of this simpler model would be condi-
tioned on the usage required for it (e.g. in a study
of synchronisation in a network of such models).

As a conclusion, the model by Booth et al.
(1997), shows a good dynamic response as com-
pared with real motoneuron data and should be
considered when choosing a reasonably realistic
mathematical model for motoneurons. Neverthe-
less, as this model was originally proposed for
turtle motoneurons (the authors used turtle, cat
and rat data to determine parameter values), ad-
ditional work needs to be done to check how its
good dynamic behaviour can be reproduced when
the parameters are changed to fit cat motoneuron
morphological and biophysical data.

The relevance of studying the frequency re-
sponses of real motoneurons and motoneuron
models transcends the mere testing of the models
to check their adequacy. Compensation of the
lowpass characteristics of muscle by the motoneu-
ron frequency response is relevant to the high

frequency performance of movement (Baldissera
et al., 1998). The motoneuron frequency response
compensates partially the phase lags caused by
axonal conduction and the sluggishness in muscle
contraction in the stretch receptor loop. This is
relevant for the reduction of tremor (Matthews,
1997).
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