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Abstract A Web-based simulation system of the spinal
cord circuitry responsible for muscle control is described.
The simulator employs two-compartment motoneuron
models for S, FR and FF types, with synaptic inputs acting
through conductance variations. Four motoneuron pools
with their associated interneurons are represented in the
simulator, with the possibility of inclusion of more than
2,000 neurons and 2,000,000 synapses. Each motoneuron
action potential is followed, after a conduction delay, by a
motor unit potential and a motor unit twitch. The sums of
all motor unit potentials and twitches result in the
electromyogram (EMG), and the muscle force, respectively.
Inputs to the motoneuron pool come from populations of
interneurons (Ia reciprocal inhibitory interneurons, Ib
interneurons, and Renshaw cells) and from stochastic point
processes associated with descending tracts. To simulate
human electrophysiological experiments, the simulator
incorporates external nerve stimulation with orthodromic
and antidromic propagation. This provides the mechanisms
for reflex generation and activation of spinal neuronal
circuits that modulate the activity of another motoneuron
pool (e.g., by reciprocal inhibition). The generation of the H-
reflex by the Ia-motoneuron pool system and its modulation
by spinal cord interneurons is included in the simulation
system. Studies with the simulator may include the statistics
of individual motoneuron or interneuron spike trains or the
collective effect of a motor nucleus on the dynamics of

muscle force control. Properties associated with motor-unit
recruitment, motor-unit synchronization, recurrent inhibition
and reciprocal inhibition may be investigated.

Keywords Motoneuron . Interneuron . Renshaw cell .

Neuronal network .Motoneuron pool . Muscle . Force .

EMG . H-reflex .Modeling . Simulator

1 Introduction

The spinal cord circuitry is one of the most investigated
neural systems, formed by complex networks of motoneur-
ons, interneurons, sensory afferents and descending tracts.
The spinal cord ventral horn contains the motor nuclei that
drive the muscles of the limbs and trunk, whereas the dorsal
horn receives sensory information from the body, which is
distributed synaptically to spinal cord motoneurons, inter-
neurons and supraspinal nuclei.

Within the context of motor control, motoneurons (MN)
are central elements in the spinal circuitry, responsible for
the integration of central and peripheral inputs, in order to
activate muscle fibers. A single alpha motoneuron and all
of the corresponding muscle fibers it innervates constitutes
a motor-unit (MU). According to their physiological
properties, motor-units are generally classified as slow
twitch (S type), fast twitch, fatigue resistant (FR type) and
fast twitch, fast fatiguing (FF type), as proposed by Burke
et al. (1973). The motoneurons in this paper will be
modelled in either of the three classes S, FR and FF.

Interneurons (IN) also play an important role in the
spinal cord motor control. Renshaw cells (RC) are
interneurons that inhibit the parent and other motoneurons
in the vicinity, acting in the so-called recurrent inhibition
pathway. One function of the Ia inhibitory interneurons
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(IaIn) is making reciprocal inhibition between antagonist
motoneuron pools, besides other tasks. Ib inhibitory
interneurons (IbIn) are mainly involved with inhibition
from Ib homonymous afferents to a otoneuron pool.

Other neuronal structures take part in the spinal cord
motor control, such as sensory fibers and descending tracts
from the brain. The former transmit proprioceptive and
cutaneous information from the muscles and the body to the
spinal cord neuronal circuitry, while the latter drive the
motoneurons and interneurons. Reviews on spinal cord
circuitry may be found in Burke (2004) and Pierrot-
Deseilligny and Burke (2005).

The investigation of human neurophysiology is mostly
limited to non-invasive approaches, due to ethical consid-
erations. Despite technological advances in experimental
techniques, the results from human experiments frequently
raise many hypotheses, usually impossible to be tested in
humans. Computer simulations can help in the hypothesis
testing by providing several procedures and measurements
not available experimentally. Simulations are also useful for
theoretical investigations of neural systems properties, for
demonstrating rules and paradigms in neuroscience and
for the study of neuropathology.

General-purpose simulators have been used in computa-
tional neuroscience (Bower et al. 2003; Carnevale and
Hines 2006), conveying information from ion channels to
neuronal networks. However, some level of customization
is required with the intention of performing complex
simulations or in the development of a simulation system.
On the other hand, more focused approaches have been
adopted by research groups interested in answering specific
questions in spinal cord investigation, which meant devel-
oping their own simulators, without a goal of general usage
(Capaday and Stein 1987; Maltenfort et al. 1998;
Nussbaumer et al. 2002; Ivashko et al. 2003; Lowery and
Erim 2005; Subramanian et al. 2005; Stienen et al. 2007;
Uchiyama and Windhorst 2007). Bashor’s (1998) spinal
network simulator was based on MacGregor’s implementa-
tions in Fortran of neuronal, synaptic and network models
(MacGregor 1987). Its focus was on the interactions
between the neuronal networks associated with two
antagonistic muscles, with parameter values based on cat
data from the literature. It assumes all 169 motoneurons of
a given pool are identical. A very detailed interneuronal
network contributes to the modulation of the motoneurons’
spike trains. Lowery and Erim (2005) presented a simula-
tion study of the effects of common oscillatory inputs on
the correlated discharges of a pool of 100 motor units. The
input command was realized by means of current injected
in the soma and the outputs were muscle force and the
spike trains of the motor-units. Subramanian et al. (2005)
expanded the model developed by Bashor (1998) with
powerful visualization tools. It combines detailed anatom-

ical and physiological aspects of the cat spinal cord. Stienen
et al. (2007) studied muscle reflex modulation by putting
together the spinal cord neuronal network model of Bashor
(1998) with a simple one-degree-of-freedom muscle-skele-
tal model. Stienen et al. (2007) compute the average output
over the motoneuron pool which is then smoothed to
provide the input to a mass-spring-damper system. They
used simulator outputs to propose neural mechanisms for
human neuropathological observations. Uchiyama and
Windhorst (2007) studied the effects of Renshaw cell
recurrent inhibition on computer-simulated cat medial
gastrocnemius motoneurons (250 to 300). The simulator
differentiated motoneurons by types and the focus was to
quantify the degree of motoneuron synchronization as a
function of Renshaw cell feedback inhibition.

The simulator described here employs differentiated
motoneuron models (S, FR and FF), with selectable
numbers of units. Each motoneuron generates, after a
conduction delay, a motor-unit potential and a motor-unit
twitch. The sum of the latter over all the motor-units results
in the total muscle force. The superposition of the former
over all the motor-units gives the muscle electromyogram.
Inputs to the motoneuron pool come from populations of
interneurons (IaIN, IbIN and Renshaw cells) and from
stochastic point processes associated with descending
tracts. To simulate electrophysiological experiments in
humans, the simulator incorporates external nerve stimula-
tion with orthodromic and antidromic propagation. This
provides the mechanisms for reflex generation and activa-
tion of spinal neuronal circuits that modulate the activity of
another motoneuron pool (e.g., by reciprocal inhibition).

The simulation system was developed with the following
requirements: flexibility to assemble and customize spinal
cord circuitry, simulation of isolated or interconnected
motor nuclei, replication of neurophysiological experiments
and access via the Internet. The simulator control panels
allow changing parameters of neuron and synaptic models,
applying stimuli to the soma, dendrite or axon, visualizing
results as graphs or exporting the raw data. The system is
intended for studying individual neurons or complex
neuronal circuitry, covering important aspects in the
investigation of the human spinal cord motor control.

Another important feature is the simulation of the H-
reflex, the homologue of the stretch reflex, obtained by
electrical stimulation of peripheral nerves. H-reflex-based
experiments have been largely used in research on the
normal or pathologic spinal cord, in order to assess the
excitability of the Ia afferent-motoneuron loop and to study
the dynamics of interneuronal pathways through appropri-
ate conditioning of the H-reflex (Misiaszek 2003; Pierrot-
Deseilligny and Burke 2005). However, this technique is
associated with many complexities (technical and in the
interpretation of the results) that inhibit its broader use in
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clinical neurophysiology (Misiaszek 2003). The simulation
of the H-reflex in different experimental paradigms can lead
to useful interpretations of the experimental results obtained
from humans.

The developed simulation system, named as ReMoto–
Remote Motoneuron Network Simulator, is a free software
open source project, designed in a web-based architecture,
being available for use at the site http://remoto.leb.usp.br.
The source code can be downloaded at the same URL. A
specific use of the simulator was published in a conference
paper (Cisi and Kohn 2007).

2 Methods

The simulation system can be configured for studying any
spinal cord motor nuclei. In its default configuration, the
neuronal circuitry is related to motor nuclei involved with
ankle flexion and extension. These nuclei are associated
with the following muscles: soleus (SOL), medial gastroc-
nemius (MG), lateral gastrocnemius (LG) and tibialis
anterior (TA). The total number of neurons simulated for
these nuclei is shown in Table 1, based on estimates from
human and cat literature (Feinstein et al. 1955; Cooper
1966; Ariano et al. 1973; Johnson et al. 1973; Buchthal and
Schmalbruch 1980; Dum and Kennedy 1980; McComas
1991; Jankowska 1992; Carr et al. 1998; Banks 2006).
Interneuron numbers are underestimated, in order to
improve system performance. Users can change these
numbers and also select how many nuclei will take part in
a given simulation.

The numbers of neurons and axons in Table 1, adopted
as default values in the simulator, are supported by
experimental data, although may not exactly reflect the
numbers found in human motor nuclei (mainly the
interneurons). A few model parameters were adjusted (as
reported later) so that these chosen default numbers of

neurons could give rise to behaviors similar to those found
in human electrophysiological experiments.

Nevertheless, the user may change the numbers of
elements, by interacting with the simulator directly on the
Neural Pools panel in the Configuration module.

Simulated neurons are arranged as columns within the
spinal cord, mimicking real neuron columns described in
the cat (Scott and Mendell 1976; Burke et al. 1977; Burke
1981; Kernell 1986; Vanderhorst and Holstege 1997). The
literature shows that: (1) the MG MN pool is coextensive
with the SOL MN pool (Scott and Mendell 1976; Burke
1981); (2) the LG MN pool is situated slightly rostral to the
MG MN pool, with a region of overlap (Scott and Mendell
1976); (3) FF type MNs have a tendency to be more rostral
than S type MNs, whereas FR type MNs are more spread in
a motor nucleus (Burke et al. 1977; Kernell 1986); (4) the
MG nucleus has up to 300 MNs spread over 6 to 7 mm
(Burke et al. 1977; Burke 1981), which leads to a density of
50 MN/mm in a spinal cord column.

Based on the cited experimental data and on the adopted
numbers of neurons for humans (Table 1), two neuron
columns were modeled: the first one containing SOL, MG
and LG neurons and the second one containing TA neurons,
arranged as follows:

1. For each nucleus, MNs are placed equally distributed in
a line, ordered by their sizes (S < FR < FF), from
caudal to rostral positions.

2. SOL MNs are placed from an arbitrary caudal position
(origin of the first column) to a rostral position,
extending over 18.0 mm.

3. MG MNs are placed from the same origin, extending
over 10.0 mm, overlapping with the first part of the
SOL pool.

4. LG MNs are placed from position 10.0 to 18.0 mm,
overlapping with the last part of the SOL pool.

5. TA MNs are placed in a column apart, with another
arbitrary origin, extending over 7.5 mm.

6. A group of RCs, IaIn and IbIn interneurons is equally
distributed among MNs of the extensor nuclei. Other
group of such interneurons is equally distributed among
MNs of the flexor nucleus.

The spatial positioning of the neurons in the simulated
neuronal columns is specially important because RC synapses
on MNs (and vice-versa) occur among synergistic nuclei
(McCurdy and Hamm 1994a, b), with synaptic strength
depending on the distance between the cells (Cullheim and
Kellerth 1978; Windhorst 1996; Burke 2004).

During configuration, the user can alter the origin and
end of each motor nucleus. In the same way, graphical
interfaces can be used to select appropriate stimuli (both
endogenous and exogenous) to be applied to the neuronal

Table 1 Default numbers of neurons and afferent fibers in each motor
nucleus

Extension Flexion

SOL MG LG TA

MN S 800 250 200 250
MN FR 50 125 100 50
MN FF 50 125 100 50
Ia afferent 400 80 76 280
Ib afferent 200 40 38 140

Extension Flexion
IN RC 350 350
IN IaIn 350 350
IN IbIn 350 350
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circuitry. The stimuli can be the descending drive from the
brain, current injected inside the neurons or electrical
stimulation on the simulated nerves. Users can assemble
networks by means of a connectivity table and adjust
neuronal or synaptic parameters in order to investigate
normal or pathologic conditions, mimicking real, hypothe-
sized or idealized situations.

Figure 1 shows a general view of the simulated motor
nuclei receiving connections from the descending tracts
(upper panel), a view of two antagonistic motor nuclei in
the so-called reciprocal inhibition interconnection (middle
panel) and details of the inner structure of one motor
nucleus (lower panel).

The motor nuclei receive synaptic inputs from a few
independent pathways: Ia and Ib sensory afferents, cortico-
spinal and rubrospinal tracts, besides the connections
among the nuclei neurons. The descending tracts generate
spikes configured with one of two possible interspike
interval distributions. Group Ia and Ib sensory axons can
generate spikes in response to the nerve stimulation (with
starting and stopping times selected by the user).

Two nerves are included in the simulator: the posterior
tibial nerve (PTN) and the common peroneal nerve (CPN).
The former contains axons from the SOL, MG and LG
motor nuclei, and the latter contains axons from the TA
nucleus. Electrical stimulation can be applied to these
nerves (Fig. 1, bottom) at selected stimulation frequencies,
amplitudes and starting times, simulating orthodromic and
antidromic axonal activation as used in reflex experiments
(e.g., H-reflex technique and reciprocal inhibition between
agonist and antagonist nuclei).

2.1 Software details

The simulation environment may be divided into three
modules: configuration, execution and analyses. The config-
uration module, with a set of default values, is a data entry
for the models’ parameters. The user can choose and
configure a simulation scenario for running experiments
and change properties of motoneurons, interneurons, neural
tracts, motor-units, synaptic conductances and stimuli. It is
possible to include or exclude neurons from each nucleus
and save customizations in the server for future use. Figure 2
shows a configuration window of the simulator.

The execution module, which is the core of the system,
solves differential equations of motoneurons and interneur-
ons using a fourth order Runge–Kutta method, with default
simulation step size of 0.05 ms. Neurons, synaptic
conductances and all other simulation elements are
designed in an object-oriented architecture, implemented
in Java classes. Simulations are run on parallel threads in
order to improve software performance.

The analyses module shows the results of a simulation,
with the following options: occurrence times of spikes from
each neuron, membrane potential of neurons, muscle force
and EMG from individual or grouped motor-units, firing
rate of the neurons, interspike interval histogram and a
summary of results from all simulated neurons. For more

Fig. 1 Top General view of the modeled spinal cord motor nuclei.
Middle Descending drive actuating on two antagonistic motor nuclei
in order to control the SOL and TA muscles at the ankle joint. Below
Structure of a spinal cord motor nucleus, its sensory afferents, and the
associated nerve and muscle
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refined signal processing or statistical analyses, the user can
save files in ASCII format, with firing times, force, EMG,
membrane potential data or conductance time course.

The simulation system development adhered to the Model-
View-Control software architecture, where tasks are divided
into layers of common responsibilities. Data access objects,
running on the model layer, use JDBC library to save
information in the application database. Java Server Pages
(JSP), HTML and JavaScript are used in the view layer, which
is responsible for the user interface. Action servlets, using
Struts framework, are deployed in the control layer, where
resides the business logic. All information about neurons,
synapses and stimuli are stored in the database and loaded
according to the simulation scenario selected by the user.

Open source software was used in order to reduce costs
and take advantage of well-structured libraries. The main
applications and libraries used in the system development
are the Tomcat servlet container (http://tomcat.apache.org),
Struts web framework (http://struts.apache.org), Eclipse
Java IDE (http://eclipse.org), HSQLDB database manager
system (http://hsqldb.org) and the JFreeChart chart library
(http://www.jfree.org).

2.2 Models of neurons and synapses

One of the principles behind the modeling of the elements
of the simulator was to keep a balance between biological
realism and computational load. Therefore, the neuron

models were chosen with a maximum of two compart-
ments. The number of ionic channels was kept to a
minimum that still enabled the reproduction of a reasonably
large set of neuronal properties described in the literature.
All the neuronal parameters (except those for the axons)
were based on cat data and are assumed to be similar for
humans (Jankowska and Hammar 2002).

2.2.1 Motoneuron and interneuron models

Motoneurons were designed as a compartmental integrate-
and-fire model, along with a functional structure to emulate
the axon firing. The two compartments represent the soma
and the dendritic tree, with electrotonic properties and
modeling aspects based on Fleshman et al. (1988) and Rall
et al. (1992). The soma and dendritic compartments were
adopted with cylindrical geometry.

At the soma, a membrane capacitance (Cs) is in parallel
association with leakage (gls), potassium (gKs and gKf) and
sodium (gNa) conductances, responsible for the suprathres-
hold electrical behavior. The dendritic compartment con-
tains a leakage conductance (gld) along with a membrane
capacitance (Cd). A coupling conductance (gc) links the two
compartments. Synapses are modelled by conductances
placed on both compartments, as will be described later.
Injected current can be applied in both compartments for
test purposes. Figure 3 shows an equivalent electric circuit
of the motoneuron model.

Fig. 2 Configuration window of the electrical stimulation parameters
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The axonal structure is functionally described in a
software algorithm that generates spikes in response to
suprathreshold electrical stimulation, applied at any point
along its length. Somatic or axonal spikes reach their target
with delays proportional to the conduction velocities and
the covered distances.

Interneurons were modeled in a simpler manner, due to
the relative scarcity of published data, having all conduc-
tances placed in one compartment, and no need of coupling
conductance. Nevertheless, the mathematical modeling
follows the same formalism as for motoneurons.

In the simulator all membrane potentials have values with
respect to the resting membrane voltage. This means that if a
neuron is in a resting state, its membrane voltage will be zero.
Accordingly, Nernst equilibrium potentials will have values
such as +120 mV for sodium and -10 mV for potassium.

Equations (1), (2), (3), (4), (5), (6), (7), and (8) describe
the membrane potentials of the dendrite and soma compart-
ments of the motoneuron models.

Cd
dVd tð Þ
dt

¼ �Isyn�d tð Þ � gld Vd tð Þ � Elð Þ

� gc Vd tð Þ � Vs tð Þð Þ þ Iinj�d tð Þ ð1Þ

Cs
dVs tð Þ
dt

¼ �Isyn�s tð Þ � gls Vs tð Þ � Elð Þ

� gc Vs tð Þ � Vd tð Þð Þ � Iion tð Þ þ Iinj�s tð Þ ð2Þ

Iion tð Þ ¼ gNam
3h Vs tð Þ � ENað Þ þ gKfn

4 Vs tð Þ � EKð Þ
þ gKsq

2 Vs tð Þ � EKð Þ ð3Þ

gc ¼ 2
Ri:ld
π:r2d

þ Ri:ls
π:r2s

ð4Þ

gld ¼ 2p:rd:ld
Rm�d

ð5Þ

gls ¼ 2p:rs:ls
Rm�s

ð6Þ

Cd ¼ 2p:rd:ld:Cm ð7Þ

Cs ¼ 2p:rs:ls:Cm ð8Þ

In these equations, Vd(t) and Vs(t) are the dendritic and
somatic membrane potential; El is the leak equilibrium
potential; gld and gls are the leak conductance for dendrite
and soma; gc is the coupling conductance; Cd and Cs are

dendritic and somatic membrane capacitances; Cm is the
membrane specific capacitance; Ri is the cytoplasm resistiv-
ity; Rm-d and Rm-s are dendritic and somatic membrane
specific resistances; ld, ls, rd and rs are the dendritic and
somatic compartment length and radius; Isyn-d(t) and Isyn-s(t)
are the postsynaptic currents caused by independent synaptic
connections on the dendritic or somatic compartment (further
described); Iinj-d(t) and Iinj-s(t) are the injected currents, inside
the dendrite and the soma, for test purposes; Iion(t) is the
membrane current due to the voltage-dependent ionic
conductances (gNa, gKf and gKs); m, h, n and q are state
variables, whose time evolution depends on voltage-
dependent rates (αm, βm, αh, βh, αn, βn, αq and βq); gNa,
gKf and gKs are the maximal conductances of the sodium,
fast potassium and slow potassium currents, with equilibrium
potentials of ENa=120 mV and EK=−10 mV. The leakage
Nernst voltage was El=0 mV.

The voltage-dependent rate constants were modeled
according to the pulse-based model (Destexhe 1997), which
simplifies the Hodgkin and Huxley formulation. The
afterhyperpolarization (AHP), an important feature that
regulates neuron firing rates, was incorporated in the
neuron models by adding a slow potassium conductance.
The combined approaches are briefly described in what
follows.

Fig. 3 Equivalent electric circuit of the motoneuron model. Synapses
and injected current can be attached to both compartments (soma or
dendrite). They are represented only in one compartment to simplify
the figure. The resting levels are adopted as 0 mV. Iext is the external
current source, applied by skin electrodes
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The differential equations in m(t), h(t), n(t) and q(t), each
in the form g

� ¼ ag � 1� gð Þ � bg � g, can be solved
analytically if the time courses of the rates (αm, βm, αh,
βh, αn, βn, αq and βq) are approximated by rectangular
pulses, triggered when the membrane potential crosses a
given threshold (Destexhe 1997). When the threshold is
crossed, the rectangular pulses, assumed to last 0.6 ms, will
be going from 0 to peak values equal to αM, αN, βH, αQ for
the variables αm, αn, βh, αq, respectively. On the other hand
the rectangular pulses (0.6 ms duration) will be going from
constant values equal to αH, βM, βN, βQ towards zero when
the threshold is crossed, for variables αh, βm, βn, βq,
respectively. This will cause exponential variations in the
state variables m(t), h(t), n(t) and q(t) before, during and
after the pulses, with time constants depending on the
respective alphas and betas (Destexhe 1997).

The maximal values of the conductances (gNa, gKf and
gKs) and the pulse amplitudes of the rates were determined
from published experimental data. Their values were
chosen to match experimental motoneuron parameters or
functions, such as the AHP (Zengel et al. 1985) and f×I
relation (for step injected current; Kernell 1965; Schwindt
and Crill 1984; Binder et al. 1996) and may be found online
at the simulator menu, under V-d conductances. For
example, the default values of the rate parameters associ-
ated with the AHP are αQ=1.5 ms−1and βQ=0.025 ms−1.
This means that the conductance that causes the AHP will
be an exponentially increasing function until time 0.6 ms,
when it becomes an exponentially decreasing function. The
inverses of the values αQ and βQ multiplied by two
[because one has q2 in Eq. (3)] define the rising and falling
time constants of the conductance responsible for the AHP.

As the MNs in the simulator can be stimulated by
current injection in the soma and as rheobase measurements
from different types of MNs are available in the cat
literature, the rheobase is selectable in the configuration
window “Motoneurons” (the default rheobase values used
in the simulator are given in Table 2). Before running a
simulation, the user may view the mean values of several

parameters (for S, FR and FF types) by selecting “see
properties” in the “Motoneurons” window. This includes
the values of the resultant mean voltage thresholds, which
the system computed from Ohm’s law (by multiplying the
rheobase and the somatic input resistance). After running a
simulation, the user may view some data that include the
input resistance and the voltage threshold of each MN, by
selecting “Summary” in the Section 3 (at the bottom left of
any window), or selecting “Files”–”Properties–All MNs”.

MN parameters in a pool were attributed considering the
ordering from the smallest to the largest MN, following the
size-order (S<FR<FF). Each MN is indicated by an index
which represents its size-rank, MN S1 indicating the
smallest S type MN, MN S2 the next one and so on.
Range of values for electrotonic parameters are shown in
Table 2. The default electrotonic properties adopted are
based on the “step model” (Fleshman et al. 1988; Rall et al.
1992). Membrane specific capacitance was set to 1.0 μF/
cm2 and cytoplasm resistivity was set to 70.0 Ω.cm for all
neurons (Barret and Crill 1974; Fleshman et al. 1988).

The value of a MN parameter was set after a linear
interpolation of the given range, considering the MN type
and index. For example, for a simulation of a single S-type
MN, the axon threshold would be equal to 18.0 mA. For a
simulation with 3 S-type MNs, the axon thresholds would
be 18.0, 15.2 and 12.4 mA for MN S1, S2 and S3,
respectively. A similar rule would apply to FR and FF
MNs, within their respective ranges of parameter values.
Some of the parameter ranges in Table 2 contribute to the
size-ordered recruitment pattern among MNs activated by a
common input (Henneman et al. 1965).

Interneuron electrotonic properties were adopted accord-
ing to data published by Bui et al. (2003), but adjusted to a
one-compartment interneuron model and with the added
assumption that Ib interneurons are similar to Ia interneur-
ons. For Renshaw cells, these values were adapted so that
the membrane time constant could make the cell fire a burst
of action potentials in response to a supra-threshold input
(Hultborn and Pierrot-Deseilligny 1979). The values of

Table 2 Range of values (minimum–maximum) for the modeled motoneuron parameters

Parameter S MN FR MN FF MN

Rheobase current (nA) 3.5–6.5 6.5–17.5 17.5–25.1
Soma diameter (μm) 77.5–82.5 82.5–87.5 87.5–113
Soma length (μm) 77.5–82.5 82.5–87.5 87.5–113
Soma specific resistance (kΩ.cm2) 1.15–1.05 1.05–0.95 0.95–0.65
Dendrite diameter (μm) 41.5–62.5 62.5–83.5 83.5–92.5
Dendrite length (mm) 5.5–6.8 6.8 – 8.1 8.1 – 10.6
Dendrite specific resistance (kΩ.cm2) 14.4–10.7 10.7–6.95 6.95–6.05
Axon threshold (mA) 18.0–12.4 12.4–12.2 12.2–12.0
Axon conduction velocity (m/s) 44.0–47.0 47.0–50.0 50.0–53.0

Motoneurons of all motor nuclei have the same range of values, by default
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parameters such as rate constants and peak conductances
(for default values, see V-d conductances panel in the
Configuration module of the simulator) were determined so
that the AHP, the f×I relation and the generation of action
potential bursts followed data from the literature (Hultborn
and Pierrot-Deseilligny 1979; Cleveland et al. 1981;
Walmsley and Tracey 1981; Windhorst 1990; Windhorst
1996; Uchiyama et al. 2003). Parameters related to the IaIn
and IbIn interneuron conductances were chosen so that
these interneurons would fire isolated action potentials in
response to a volley coming from the sensory afferents
(Jankowska 1992). The default values may be found in the
“V-d conductances” window of the simulator, after select-
ing the desired interneuron in the Pool and Neuron pull-
down menus.

Motor axons MN axons have the default length of 0.8 m, a
typical value for distal leg muscles for an adult human.
Distance between the stimulation point and the spinal cord
is set by default to 0.6 m for the PTN nerve, and 0.66 m for
the CPN nerve. Distance between the stimulation point and
the end-plate is set by default to 0.2 m for the PTN nerve,
and 0.14 m for the CPN nerve. These values were estimated
in the laboratory. The user can alter all these lengths and
distances, for simulation of primate, cat or other animals.

Orthodromic and antidromic volleys can be elicited in
response to suprathreshold electrical stimulation of motor
axons. The antidromic action potential may collide with an
orthodromic spike and cause annihilation. If there is no
down-going action potential from the motoneuron soma,
the antidromic action potential excites the Renshaw cells
(Fig. 1, bottom) and discharges and action potential in the
soma after a conduction delay.

2.2.2 Neuronal dynamics

Starting a simulation, somatic and dendritic membrane
potentials are at their resting levels, set to 0 mV. Excitatory
synapses or injected current canmake the somamembrane of a
given neuron surpass the firing threshold. In response, sodium
conductance rises quickly, depolarizes the soma and hence
generates an action potential. The potassium conductances are
also activated: the fast potassium conductance repolarizes the
membrane after the spike, whereas the slow potassium
conductance leads the membrane to the AHP period.

A new action potential is fired when the soma membrane
potential reaches the firing threshold and the absolute
refractory period is over. Another possibility for a soma
spike generation is the arrival of an antidromic spike
coming from the axon, assuming no refractoriness is under
way from a previous activation. The default value of the

MN absolute refractory period in the simulator was set at
5.0 ms, to keep the maximum firing rate at 200 spikes/s
(Powers 1993). For brevity, spikes/s is indicated as pps,
pulses/s, in the simulator. The axon may trigger an action
potential if the external stimulation overcomes the axonal
firing threshold.

2.2.3 Synapse modeling

Synaptic actions are effected by changes in a conductance
placed at a postsynaptic neuron compartment (dendrite or
soma). These conductances are activated in response to
action potentials generated by presynaptic neurons. The
membrane current caused by independent synaptic con-
nections is defined by the following equation:

Isyn tð Þ ¼
XN
i¼1

XN
j¼1

gsyn ij tð Þ Esyn ij � V tð Þ� �
i 6¼ j ð9Þ

where gsyn ij (t) is the time course of an independent
synaptic conductance, connecting the presynaptic neuron i
with the postsynaptic neuron j; Esyn ij is the reversal
potential related to the synapse type (70 mV for excitatory
synapses and −16 mV for inhibitory synapses); and V(t) is
the membrane potential of the compartment where the
synapse is located (dendritic or somatic compartment). For
cells not interconnected, gsyn ij (t) is null.

The synaptic conductance behavior is controlled by
equations that model the release, binding and unbinding
of neurotransmitters, modeled by the two state Markov
model proposed by Destexhe et al. (1994a). In this
proposal, the transmitter-gated postsynaptic conductance is
given by gsyn(t)=gmax·r(t), where r(t) takes values in the
range [0,1] and gmax is the maximum conductance of the
synapse. The variable r(t), representing the fraction of
bound postsynaptic receptors with respect to the total
amount of receptors, is a rising exponential function during
the release of neurotransmitter (mimicked by a rectangular
pulse of neurotransmitter, with peak value Tmax), and a
decreasing exponential function after the neurotransmis-
sion. This method of computing synaptic conductance is
preferable to using alpha functions (Rall 1967), because the
results are more precise and response saturation occurs
naturally, as the conductance value approaches its upper
limit (Destexhe et al. 1994b; Giugliano 2000). Moreover,
the conductance computation of the Markov model can be
optimized by using Lytton’s algorithm (Lytton 1996),
which assembles the actions of all synapses in four groups:
those for which transmission is in course and those for
which transmission is over, for excitatory and inhibitory
synapses.
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Excitatory synapse parameter values were based on
Finkel and Redman (1983) and inhibitory synapse (except
for RCs) on Stuart and Redman (1990). Synaptic con-
ductances of RCs to MNs had their maximum value based
on Hultborn et al. (1988) and Friedman et al. (1981).
Synaptic conductances of MNs to RCs had maximum
conductance values chosen to cause bursts in the RCs
(Walmsley and Tracey 1981; Windhorst 1996).

The synapses may be configured to have special
recovery dynamics of releasable neurotransmitter stores in
order to mimic synaptic depression. Whenever a pre-
synaptic neuron discharges an action potential, the available
amount s(t) of stored (and releasable) neurotransmitter
diminishes by a fraction p and returns exponentially to its
resting level with a time constant τ (Kohn et al. 1995;
Abbott et al. 1997). A lower amount of released neuro-
transmitter decreases the peak value of the postsynaptic
conductance when activated by a presynaptic action
potential and hence will cause a smaller postsynaptic
potential. This feature of synaptic depression is found in
the Ia to MN synapses (Capek and Esplin 1977) and in the
MN to RC synapses (Hultborn and Pierrot-Deseilligny
1979). In the simulation system, the default values of the
fraction p and time constant τ were based on data from the
papers cited above and also on data evidencing
the dynamics of human H reflex depression (Floeter and
Kohn 1997). This means that the values of p and τ for the
synapses between Ia terminals and the motoneurons were
adjusted so that the simulator could reproduce at the
network level reflex amplitude decreases similar to those
described for humans. The adopted values for p and τ are
0.11 and 1,500 ms for the synapses of Ia axons on
motoneurons (also used in Cisi and Kohn 2007), and 0.50
and 200 ms for the synapses between the motoneurons and
the Renshaw cells.

Recurrent inhibition synapses The influence of RCs on the
MN pool is widespread and a single RC reaches several
MNs (McCurdy and Hamm 1994a; Windhorst 1996). On
the other hand, one MN reaches a smaller number of RCs
(Cullheim and Kellerth 1978; Burke 2004). The influences
of a RC over the MN pool and the influence of a MN over
the RC pool diminish with distance, modeled according to
Eq. (10):

weight ¼ a

aþ d2
ð10Þ

where weight is the synaptic strength, which multiples the
conductance value of a synapse between a RC and a MN; d
is the distance between a RC and a MN in the rostro-caudal
axis; a=0.22 is a decay factor, chosen to achieve 10% of

the maximum strength at a distance of 1.4 mm between a
RC and target MNs (McCurdy and Hamm 1994a; Wind-
horst 1996). For the synapses from MNs to RCs, the factor
a was set at 0.01, because the maximum spread of the MN
collaterals reaches 1 mm (Cullheim and Kellerth 1978;
Burke 2004).

Synaptic noise Synaptic noise was also considered in the
system. Vertebrate neurons receive a very large number of
active synaptic inputs that result in a random membrane
potential. This effect was modeled by using synaptic
conductances activated by Poisson processes, which repre-
sent spike times of a population of pre-synaptic neurons.
The system allows application of independent excitatory
and/or inhibitory synaptic noise over each simulated MN,
sharing the same formalism used for the synapses between
two cells.

2.2.4 Motor-unit force and action potentials

The motor-unit twitch in response to an action potential in
the associated motoneuron was modeled as the impulse
response of a critically damped second-order system [Eq.
(11)]; Fuglevand et al. 1993). The motor-unit spike train is
represented in Eq. (12). Equation (13) gives the force
generated by one MU, under isometric conditions.

a tð Þ ¼ Apeak
t

tpeak
exp 1� t

tpeak

� �
u tð Þ t 2 < ð11Þ

e tð Þ ¼
X
i

d t � tAPið Þ ð12Þ

f tð Þ ¼ e tð Þ � a tð Þ ð13Þ

where a(t) is the function that models one twitch; Apeak and
tpeak are the peak and time-to-peak (or contraction time) of
the twitch; u(.) is the Heaviside step function; f(t) is the
force developed by one MU; e(t) is the system input, i.e.,
the superposition of all MU action potentials occurring at
times tAPi.

To improve the simulation performance, a twitch was
viewed as the impulse response of a linear time-invariant
system. The discrete-time version of force twitch was
obtained, with great computational advantage, by discretizing
the critically damped second-order differential equation by
the “impulse invariance” digital filter technique (Oppenheim
et al. 1999). Hence, one can simulate the twitch generation by
a difference equation.

528 J Comput Neurosci (2008) 25:520–542



The impulse response is sampled at every T time units,
where T is the numerical integration time step [Eq. (14)].
The times of motor unit activation are indicated by ni
[Eq. (15)]. The z-transform yields the desired difference
equation, obtained in Eq. (16), which computes the force
developed by one motor-unit. When the motor unit is
activated by a fast train, there will be an increase in motor
unit force, due to summation of twitches, until a pre-
established maximum value is reached, the tetanic force
(see Table 3). In the present implementation, for simplicity
reasons, the saturation is hard, meaning that, at any time
point, a force value above the selected tetanic force will
saturate. The sum of forces from all motor-units of a muscle
represents the muscle force [Eq. (17)]. The equations in
discrete-time are:

a nð Þ ¼ T :Apeak
T :n

tpeak
exp 1� T :n

tpeak

� �
:u nð Þ n 2 Z ð14Þ

e nð Þ ¼
X
i

d n� nið Þ ð15Þ

f nð Þ ¼ 2e
�T
tpeak f n� 1ð Þ � exp �2T

tpeak

� �
f n� 2ð Þ

þ ApeakT2

tpeak
exp 1� T

tpeak

� �
e n� 1ð Þ

ð16Þ

F nð Þ ¼
XN
i¼1

fi nð Þ ð17Þ

where a(n), e(n) and f(n) are the sampled versions of
Eqs. (11), (12) and (13); and F(n) is the total muscle force.

The motor-unit action potentials (MUAPs) were mod-
eled using Hermite–Rodriguez functions, which fit the
shape of MUAPs well (Lo Conte et al. 1994; Zhou and
Rymer 2004). Surface bipolar electrodes were assumed,
with 8 mm diameters and 20 mm separation, as typically
used in human experiments. They are usually placed in the
skin in a middle position between the muscle center and a
distal tendon.

The first-order Hermite–Rodriguez function [Eq. (18)]
models biphasic MUAPs, whereas the second-order

Hermite–Rodriguez function [Eq. (19)] models triphasic
MUAPs. A simulated motor-unit had the same probabil-
ity to be associated with an HR1 function or an HR2

function.

HR1 tð Þ ¼ AM t � tAPð Þe
� t�tAPð Þ

lM

� �2

u t � tAPð Þ ð18Þ

HR2 tð Þ ¼ AM 1� 2
t � tAPð Þ
lM

� �2
" #

e
� t�tAPð Þ

lM

� �2

u t � tAPð Þ

ð19Þ

where AM and λM are scale and time factors and tAP is the
time of arrival of an action potential.

These two equations represent MUAPs at the center of a
motor-unit territory. The position of the motor-unit territory
in relation to the surface electrodes could alter the MUAP
shape. Motor-unit territories were considered as spread in a
random way within a muscle section (Johnson et al. 1973).

The surface electromyogram (EMG) is not a simple
summation of all MUAPs generated by the motor-units. It
is affected by at least three effects: (1) biological tissues
filter the original signal, altering the frequency spectrum
(Plonsey 1974); (2) MUAPs due to distant motor-units are
more attenuated than those due to closer motor-units
(Fuglevand et al. 1992); (3) in practice, the electromyogram
is band-filtered in order to avoid noise and aliasing. All
these three effects are represented in the simulator.

The MUAP amplitude attenuation is modeled to fit data
shown by Fuglevand et al. (1992), and is represented by
Eq. (20). The duration increase with distance between
muscle fibers and the electrodes was based on data from
Hermens et al. (1992), and is represented by Eq. (21).

V ¼ V0 exp
�d

tat

� �
ð20Þ

T ¼ T0 1þ C:dð Þ ð21Þ

where V is the surface MUAP amplitude, V0 is the MUAP
amplitude at the center of the motor-unit territory, T is the

Table 3 Twitch, force and MUAP parameter ranges

Parameter S MU FR MU FF MU

Twitch force (gram-force) 10.5–12.5 12.5–30.0 30.0–50.0
Tetanic force (gram-force) 40.0–50.0 50.0–120.0 120.0–200.0
Contraction time (ms) 110–100 73.5–55.5 82.3–56.9
AM parameter (μV) 0.105–0.125 0.125–0.30 0.30–0.50
λM parameter (ms) 0.80–0.70 0.70–0.60 0.60–0.50
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surface MUAP duration, T0 is the MUAP duration at the
center of the motor-unit territory, d is the distance between
the center of the motor-unit territory and the middle point of
the two electrodes; τat is the attenuation distance constant
and C is a constant related to the widening of the MUAP. τat
was set at 5.0 mm−1 in order to fit to the modeled attenuation
(Fuglevand et al. 1992), and C was set at 0.1 mm−1

(Hermens et al. 1992). The human muscle sections were
based on Maganaris et al. (1998), with diameters (in mm) set
to 18.4, 17.0, 18.8 and 18.8 for the SOL, MG, LG and TA,
respectively.

The simulated myoelectric signal can also be filtered to
mimic bandpass filtering typically employed in electromy-
ography. The simulator contains a band-pass filter imple-
mented as a digital filter, using the technique of “impulse
invariance” (Oppenheim et al. 1999).

Motor-unit twitch properties were based on Garnett et al.
(1979), Vandervoort and McComas (1983) and Chan et al.
(2001). The relationship between twitch peak and the
amplitude of the MUAP (at its origin) was adopted as
linear, based on the fact that both have linear relations to
the number of muscle fibers of a motor-unit. MUAP time
factor (λM) was chosen between 5 and 40 ms to match
MUAP durations found in measurements taken in our
laboratory and those shown in the literature (Fuglevand et
al. 1992). Different ranges of parameter values were used
for different motor-unit types and sizes, as can be seen in
Table 3. However, data from human leg motor units are
incomplete and scarce, therefore, some of the values are
probably only rough approximations. These are the default
values found in the simulator, but these values may be
changed at will every time a user runs a new simulation.

2.2.5 Electrically stimulated sensory afferents

Group Ia and Ib sensory afferents have axons of large
diameter. In spinal reflex studies, they are easily recruited in
response to electrical stimulation, applied by surface electro-
des. In the simulator, each sensory afferent axon may generate
and transmit spikes through its axon in response to electrical
external stimulation, applied to the nerves.

Table 4 shows sensory axon threshold ranges for nerve
stimulation with a 1.0 ms electrical pulse (the only pulse
duration included at present in the simulator), and axon
conduction velocity ranges based on Jimenez et al. (1970)
and Awiszus and Feistner (1993). Axon length and

stimulation point are the same for sensory and motor axons
because they are bundled together in the same nerve.

Sensory afferents in the simulator project to MN pools
with a projection fraction that can be selected from 0 to
100%, i.e., a single pre-synaptic axon can reach up to 100%
of the MNs and INs in the target pool. For example, if a
90% connectivity is set for the synapses between soleus Ia
afferent fibers and homonymous FF motoneurons, this
means that, each Ia afferent will be synaptically connected
to 90% of the FF type homonymous MNs, chosen in a
random way. The random choices are independent from one
Ia afferent to another. The (default) projection fraction
depends on the connection type (homonymous or heteron-
ymous), the motor nucleus and the neurons involved.

2.2.6 Descending tracts

Descending tracts that drive the motor nuclei were modeled
as a set of axons, each being an independent spike train
generator. It is possible to select and configure two different
point process realizations for the spike train: Poisson or
with truncated-Gaussian interspike intervals (ISI). The
former mimics a very irregular spike train, for example
due to the superposition of many independent point
processes (Cox and Isham 1980). The latter may be set to
a very regular spike train by selecting a small standard
deviation for the interspike intervals.

The descending tract spike trains can be modulated, by
varying the mean ISI according to a modulating signal:
pulse, ramp, sinusoid or square wave. The same modulation
can be applied to the injected currents.

As described above for the sensory fiber connections,
descending tract fibers project to a given fraction (from 0 to
100%) of a MN pool or a group of INs. Such fraction can
be configured prior to a simulation.

The descending tracts in humans may activate the
motoneuron pools either directly or through interneurons
(Jankowska 1992), and the exact proportion is not well
known for different motor nuclei in humans or animal
experimental models. In the present simulator, the driving
inputs from the upper centers are being called descending
tracts either if their action is direct or indirect. What matters
are the spike trains (e.g., Poisson) that activate the synapses
on the motoneurons of each pool.

2.3 Model tuning and validation

As one of our purposes was to provide means for simulating
human neurophysiology, some comments are due on the
intricacies found in this process. First, neuronal character-
istics used in the modeling, e.g., input resistance, membrane
time constant, amplitude of post-synaptic potentials etc,
cannot be obtained directly from human neurons, being

Table 4 Sensory axon parameter ranges

Ia afferent Ib afferent

Axon conduction velocity (m/s) 69.0–65.0 66.0–62.0
Axon threshold (mA) 6.0–18.0 13.0–22.0
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taken from cat neurons instead. These data are probably
reasonable first approximations to human data (Jankowska
and Hammar 2002). Second, many different sources of data
were used for the tuning and validation processes, which
may cause a dispersion of parameter values due to different
samples and techniques used in each laboratory. Third,
some parameter values are not presently available from
animal data, and hence had to be chosen ad-hoc. These
issues are common to all papers that study human brain and
spinal cord dynamics by means of computer simulations.

The model adjustment/validation was divided in two
stages: initially, a set of fundamental properties of moto-
neurons and interneurons was adjusted, avoiding diver-
gence in one property when another was being matched.
Whenever possible, biophysically-based parameter values
were used. After that, the circuitry as a whole was adjusted
in order to exhibit global behaviors similar to those found
in human experimental studies. For this second stage,
measurements of force and EMG, distribution of motor-unit
interspike intervals (ISI) and H-reflex results were used, as
presented in other sections.

Motoneuron parameters were mainly based on data from
cat motoneurons. The electrotonic parameters of the MN
model (Table 2) were chosen with the intention of
exhibiting the same membrane electrical properties as
measured by Zengel et al. (1985). The properties shown
by the models are well compliant with the corresponding
properties of the referenced MNs. After the model
adjustment process, simulated motoneurons exhibited the
properties shown in Table 5, in columns 3–5. The second
column in this table indicates the range of values found in
the literature. The fit between the measurements from the
simulated motoneurons and the experimental literature is a
consequence of the chosen values of the MN electrotonic
parameters (Table 2) and conductance parameters, being,
therefore, a (partial) validation of the motoneuron models.

Having matched membrane electrical properties, the
resulting relations between the steady-state discharge rate
and the magnitude of the injected current (f×I relations)
also showed acceptable values.

For interneurons, the approach was similar, except that
the available amount of experimental data is much less (see
Section 2.2.1). In the case of the Renshaw cells the
tendency for bursting was taken into account together with
the available biophysical data. On the contrary, for Ia and Ib
interneurons their tendency for single discharges was a goal
for parameter adjustment.

3 Results

3.1 Membrane potential time course

Typical simulated neuron membrane potential time-courses
can be visualized in the result module of the simulation
system. Figure 4 shows the action potentials generated by
an S type MN being activated by a corticospinal descending
tract (100 axons), each fiber discharging either at a 200 pps
mean rate (above) or at 20 pps (below), all being
independent Poisson trains. In the second simulation, the
motoneuron membrane did not reach firing threshold,
making it easier to notice the small excitatory postsynaptic
potentials occurring randomly.

Membrane potential time-course of Renshaw cells, IaIn
and IbIn interneurons can also be visualized in the Results
module of the simulator. Figure 5 shows the membrane
potential of a RC in response to a strong supra-threshold
stimulus to the PTN nerve (all motor axons fired an action
potential). The RC, as happens in the cat (Walmsley and
Tracey 1981), fired a burst of action potentials (in this
simulation there were ten spikes followed later by two
additional spikes).

3.2 Firing rate adaptation

Figure 6 shows the firing rate adaptation of representative
S, FR and FF type motoneurons submitted to current steps
of injected current. Firing rate adaptation was observed for
all motoneuron types, practically ending after the first or
second interspike interval. In cat motoneurons, the basal

Table 5 Properties exhibited by the modeled motoneurons

Real MNs Modeled MNs

S–FR–FF S FR FF

Input resistance (MΩ) 1.6–0.9–0.6 1.6 0.9 0.6
Membrane time constant (ms) 10.4–8.0–5.9 10.4 8.0 5.9
AHP magnitude (mV) 4.9–4.3–3.0 4.9 4.3 3.0
AHP duration (ms) 161–78–65 160 87 67
f×I steady state first segment (pps/nA) 1 to 3 2.7 2.5 3.6
F×I steady state second segment (pps/nA) 3 to 8 6.3 3.8 4.9

For the f×I relations, experimental data were taken from Schwindt and Crill (1984); for the other properties, data were taken from Zengel et al. (1985)
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firing rate is usually approached within the first few
interspike intervals, being followed by other phases of
adaptation which are not represented in our models (Binder
et al. 1996).

3.3 Response of motoneurons to linearly increasing
descending drive

In this simulation, the aim was to observe the firing rate of
a few S type motor units from a pool when subjected to a
linearly increasing intensity of the descending drive. The
muscle simulated is the tibialis anterior, with 250 S type
MNs, 50 FR type and 50 FF type. The descending tract was
simulated with 70 axons, with a 100% connectivity, and
each with a basal Poisson process with mean interspike
interval of 20 ms superimposed on a linear increase in
intensity with peak 50 spikes/s. Synaptic noise (imple-

mented as independent Poisson processes applied to each
MN, as described in Section 2) had a 10 ms mean ISI.

Figure 7 shows the mean firing rates (smoothed by a
three-point sliding average) of MNs 1, 25, 50, 75 and 100
(all type S) from the pool. The firing rate of a smaller MN
tended to be higher than that of a larger MN. The total
muscle force is drawn in thick line and shows a nearly
monotonic increase. Its level at 1,000 ms was about 50%
the maximum voluntary contraction (MVC) as checked
with another simulation where a high intensity descending
drive was employed that recruited the whole pool at full
rate. In this type of simulation there can be local changes in
the order of recruitment due to random synaptic noise used
in the simulations. These results are reasonably compatible
with the experimental results found by De Luca et al.
(1996) in human tibialis anterior muscle (see their Fig. 4).

Fig. 5 Renshaw cell membrane potential time-course in response to
supra-threshold stimulation to the PTN nerve

Fig. 4 MN membrane potential time-course. Top MN receiving
spikes from 100 independent descending axons discharging at
200 pps. Bottom Same as above, but with descending axons
discharging at 20 pps. The two panels were reproduced directly from
the graphical output of the simulator

Fig. 6 Firing rate adaptation of motoneurons of types S (a), FR (b)
and FF (c) after injection of current steps in their somas. The ordinate
indicates the instantaneous firing rate associated with each interspike
interval. The figure was done in Matlab from the spike rate files
generated by the simulator
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3.4 Force generation and MN recruitment

A computer-simulated single motor unit twitch had a time-
to-peak, or contraction time, equal to that set in the Motor-
Units Parameters configuration panel. For example, for a
pool containing only 100 S type MNs, with a range of time-
to-peak from 100 to 110 ms (from larger to smaller MUs)
the time-to-peak of MN 50 was 105 ms. On the other hand,
the half-relaxation time (the interval from the peak of the
twitch to half the peak value) resulted approximately
170 ms. This value seems larger than the (scarce) available
data from human leg motor units (Garnett et al. 1979;
Vandervoort and McComas 1983; Andreassen and Arendt-
Nielsen 1987). The slow decay of the impulse response of
the second order system that generates the twitches may
perhaps be adequate for the smallest human soleus motor
units, but not for other human muscles.

The default parameter values of twitch amplitudes and
tetanic forces resulted in physiologically reasonable slopes
of the force x frequency (F×f) functions for single motor
units. For simulations of a type S MN subjected to trains of
pulse stimuli at rates from 2 Hz up to 40 Hz, the resulting
F× f plot was a straight line (saturating at 40 gf) with a
slope of 7.9%/Hz, which is within the range found in
human toe extensors (Macefield et al. 1996) and cat medial
gastrocnemius muscle (Kernell et al. 1983). The shape of
the F×f relation did not follow the sigmoidal shape found
in real motor units because of the simple approach used in
the simulator (see Section 4).

Spinal cord motoneuron pools receive a multitude of
synaptic inputs from different parts of the central and
peripheral nervous systems. The time course of the firing
patterns of the motoneurons will define the dynamic
behavior of the innervated muscle. To evaluate the
dynamics behind force generation in the model, the

following simulation was carried out, mimicking a twitch
interpolation experiment. A voluntary contraction was
induced with the activation of the excitatory corticospinal
tract, composed of 200 axons, each one discharging
independently as a Poisson process. The intensity of the
Poisson processes varied linearly from 10 up to 60 pps, the
latter being reached after 300 ms and maintained at this
value from then on. This produced a rising activity in the
motoneuron pool as shown in Fig. 8. Both recruitment of
new units (following the size-ordered recruitment) and
increase in firing rate are visible in the figure. An electrical
stimulus was applied at 1,000 ms to the posterior tibial
nerve with an intensity appropriate to discharge the largest
motor units. For simplicity, here we are assuming that an
external stimulus activates preferentially the largest diam-
eter axons, which is observed in animal setups (but not
necessarily in human experiments). The response of the
motoneuron pool may be seen in Fig. 8 by the discharge of
a large number of the higher threshold motoneurons. The
corresponding force recordings associated with such a
simulation are shown in Fig. 9. In Fig. 9(a) one sees the
twitch caused by a single electrical stimulus to the PTN
nerve applied at 1,000 ms, under the assumption of relaxed
muscle, i.e., without any descending drive being applied to
the motoneuron pool. When the descending drive was
applied (generating the motoneuron pool discharges of
Fig. 8) the MG muscle generated the force shown in
Fig. 9(b). The force gradually rose to a steady state and then
at 1,000 ms there was a superimposed twitch due to the
electrical stimulation.

For a comparison with experimentally obtained data, a
simple experiment was run in the lab (with local ethics
committee approval) mimicking the idea behind the
simulation described above. A subject (male, age 36),
sitting comfortably, had its right foot strapped to a pedal-
torque-meter system. In the first experiment the subject sat

Fig. 8 Raster plot of motoneuron firings from the MG muscle from a
simulation of a ramp-and-hold descending activation of the motoneuron
pool. At 1,000 ms there was a strong electrical stimulus to the posterior
tibial nerve which discharge preferentially the largest motor units

Fig. 7 Mean firing rates of five type S motoneurons from a
simulation of the tibialis anterior motoneuron pool. The descending
drive spike trains had a linearly increasing intensity. The thick line
indicates the resulting muscle force with the ordinate indicated on the
right side
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relaxed and a single electrical pulse stimulus (100 μs) was
applied at the popliteal fossa. The stimulus, in this subject,
activated only the medial gastrocnemius muscle, without
any reflex activity. The resulting torque twitch is shown in
Fig. 10(a). Then, the subject was instructed to apply a raising
force up to a predefined plateau level (low torque value)
while the same electrical stimulus was applied at a latency
of 1,000 ms. The resulting torque is shown in Fig. 10(b)
showing a rise towards a plateau (the subject was not able
to keep a constant level) and then a superimposed twitch
due to the electrical stimulation.

Note that the ordinate calibrations are different in Figs. 9
and 10, the former being in force and the latter in torque.
But the general behaviors are similar, which suggests that
the simulator may provide useful predictions of results from
neurophysiological experiments. What the simulation gives
in addition to the experimentally obtainable data are the
firing times of all motoneurons in the pool (Fig. 8). With
present technology, one could record the firing times of
only a very small (random) sample of the existing motor
units from a human muscle such as the MG.

Force modulation A rhythmic voluntary contraction of a
given muscle, common in everyday life, must be achieved
by modulating the descending drive intensity in a rhythmic
fashion. In order to illustrate the force production in
response to a time-varying descending command, the MG
motor nucleus was subjected to a sinusoidally modulated
descending drive intensity. This signal affected the mean
firing rate of each corticospinal fiber composing the
descending command. The simulated motoneurons had also
connections with associated RCs. In this simulation, the
corticospinal tract was formed by 100 fibers, whose firing

rate varied between 100 and 500 pps, modulated by a 1 Hz
sinusoid signal. As a result, the force developed by the MG
muscle presented a sinusoidal aspect, containing some level
of distortion. Figure 11 shows, from top to bottom, the
spike times of all fibers of the corticospinal tract (first 2 s),
the MG force produced and the spike times of all MG MNs.
There are no equivalent data from humans for comparison.
The force and the firing times of a few motor units could be
recorded from an experimental subject, but the whole
picture is not obtainable.

3.5 Motor-unit ISI histogram

Experimental measures of motor-unit ISI can be obtained
from humans with special procedures (Clamann 1969;
Andreassen and Rosenfalck 1980; Rosenfalck and Andreassen
1980; Halonen et al. 1981). Different motor-unit ISI
distributions have been found, according to the muscle and
the contraction level (Clamann 1969; Person and Kudina
1972; De Luca and Forrest 1973; Poliakov et al. 1995). In
some cases, the distribution is Gaussian-like (usually for
faster discharge rates), whereas in others, the distribution is
asymmetric, with a prolonged right tail (usually for slower
firing rates). For example, Andreassen and Rosenfalck
(1980) have found the mean ISI for their sample of TA
motor-units (from 71 motor units in four subjects) ranging
from 49 to 160 ms, and with the corresponding ISI standard
deviation varying from about 6 to 28 ms. They mention the
ISI histograms were nearly normal, with a slight skew to
longer intervals.

A simulation was performed to analyze the statistics of
the ISI of S type TA motor-units. The TA motor nucleus

Fig. 10 Force developed by the MG muscle in a human subject in
response to a single electrical stimulus applied to the posterior tibial
nerve with the muscle relaxed (a), or while trying to keep a constant
torque (b)

Fig. 9 Force developed by the MG muscle in a simulation of a single
electrical stimulus applied to the posterior tibial nerve with the muscle
relaxed (a), or while reaching a plateau torque (b). This last situation
(b) corresponds to the raster plot shown in Fig. 8
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was subjected to drive from the corticospinal tract (100
axons) discharging as independent Poisson trains with
mean rates 300 spikes/s. The first type S MN of the pool
(MN 1) had a Gaussian-like (as judged visually) ISI
histogram [Fig. 12(a)], with coefficient of skewness 0.232.
The corresponding mean interval was 53.79 ms, the
standard deviation was 4.63 ms and, therefore, the CV
was 0.086. A larger type S MN from the pool, MN 91, had
a more asymmetric ISI histogram, with a coefficient of
skewness 1.201 [Fig. 12(b)]. The mean interval was
75.27 ms, the standard deviation was 15.41 ms and the
CV was 0.205. This finding of lower CV of the ISIs for a
faster discharging motoneuron was also found if the same
MN was simulated with two different descending drive

intensities (values not shown). The pairs of values of mean
interval and standard deviation determined from the
simulations of the MG motoneuron pool are compatible
with the experimental data presented by Andreassen and
Rosenfalck (1980) in their Fig. 3.

3.6 H-reflex experiment

H-reflexes can be obtained from many muscles, but for
lower limb experiments the soleus muscle is the most
commonly assessed. The soleus H-reflex is obtained by
placing a stimulation electrode over the PTN nerve at the
popliteal fossa. The volley of action potentials from the
activated Ia sensory fibers reaches the spinal cord and
activates excitatory synapses on the motoneuron pool. The
firing of a fraction of the MN pool generates an efferent
volley, which causes a contraction of the innervated muscle.
The reflex response is observed by recording the evoked
electrical signal on the soleus muscle.

Experiments conducted in our laboratory, as well as
those published in the literature (Floeter and Kohn 1997;
Kohn et al. 1997; Pierrot-Deseilligny and Burke 2005),
supplied data used to adjust the threshold for axon firing
and the size of motor-unit potentials (MUAP). These
parameters were changed in an ad-hoc way (within
physiological ranges) until the simulated motor nuclei
could generate H-reflexes compatible with those obtained
in humans.

Figure 13 shows the soleus EMG signal and the
corresponding motor-units that fired after applying a
stimulation pulse to the PTN nerve, at a position equivalent
to the popliteal fossa of the virtual subject. The stimulation
pulse had amplitude of 14.0 mA. The M wave arose with

Fig. 12 ISI histograms of two S type motor-units from a simulated
pool of motoneurons of the TA muscle. The histogram for MN 1 (a)
resulted narrower and Gaussian-like, while that for MN 91 (b) resulted
skewed to the right and wider

Fig. 11 Top First 2 s of the sinusoidally modulated spike times of
each corticospinal fiber. Middle Force generated by the MG muscle
during 10 s. Bottom The corresponding MN pool spike times (ordinate
are the MN indexes, from smaller to larger)
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latency around 5 ms, as shown by the EMG signal and by
the graph of MN spikes.

The graph of the MN spikes shows the times when the
spikes reached the neuromuscular junction. As the distances
covered by the spikes directly discharged by the motor
axons are small, these spikes reach the neuromuscular
junction early (M wave at ~5 ms). Spikes associated with
the H-reflex cover greater distances and reach the neuro-
muscular junction later (H responses at ~29 ms). Although
not visible in the figure, there are no double discharges in
any of the MNs in the pool due to the refractory periods of
the axons and soma. This can be checked by selecting
“Files” and then “generate” in the “Results” option (at the
bottom left) and then looking at the spike times of each
MN. Notice that the MN spike times in the simulator may
be shown or saved in a file in two different ways: with
respect to the arrival at the end-plate (as used in Fig. 13) or
with respect to the generation time at the soma (less
preferable for comparisons with human electrophysiologi-
cal data).

Figure 14 shows the H-reflex and M wave recruitment
curves obtained from a simulation. These curves were
obtained by applying increasing amplitude pulses over the
simulated PTN and measuring the soleus peak-to-peak H
reflex and M wave responses. These recruitment curves
are within a range found experimentally (Floeter and
Kohn 1997; Pierrot-Deseilligny and Burke 2005) and
unpublished data supplied by M. K. Floeter and A. F.
Kohn.

H-reflex depression When H-reflexes are elicited in
humans in response to a train of stimuli, e.g., electrical
pulses delivered at 1 s intervals, there is a progressive
decrease in H-reflex amplitude until a plateau value is
reached after a few stimuli. This is the so called H-reflex
depression, and has been attributed to the Ia-MN synaptic
depression (Kohn et al. 1997), which reduces the number of
reflexively recruited MNs.

An experimental H-reflex protocol (Floeter and Kohn
1997) was simulated consisting of the application of a 1 Hz
train of ten pulses with constant intensity, over the PTN
nerve, and verifying the decline of the peak-to-peak
amplitudes of the H-reflexes. The synaptic depression
parameters were kept the same for every synapse between
the Ia afferents and all the MNs in the simulated motor
nuclei. Results are shown in the panels of Fig. 15.

The upper panel of Fig. 15 shows the amplitude decline
of the H-reflex until a plateau is reached. The lower panel
of Fig. 15 shows the number of recruited MNs in response
to each stimulation pulse. The depression of H-reflex
amplitude obtained in the simulations is within the range
found experimentally (Floeter and Kohn 1997; Kohn et al.
1997; Meunier et al. 2007). It is important to note that the
data supplied in the lower panel are impossible to obtain in
humans and cats with present technologies. Thus, this, as
well as other simulations, can provide predictions about
underlying mechanisms and phenomena that are otherwise
unavailable.

3.7 Performance

A large simulation, as that of the H-reflex depression during
10 s, lasted 8.9 min, run on a system server based on two
Xeon 3.0 GHz dual core (64 bits) CPUs. Another
simulation, in which all neurons of all nuclei were
simulated during 1 s, subjected to descending drive and

Fig. 14 H-reflex and M wave recruitment curves, obtained in
response to stimulation pulses with amplitude ranging from 10 to
20 mA

Fig. 13 Upper panel Soleus M wave and H-reflex in response to a
14 mA pulse of stimulation. Lower panel Corresponding times of the
MN spikes reaching the neuromuscular junction (MN indexes on
ordinate)
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nerve electrical stimulation, lasted 13.1 min. This simula-
tion involved computations associated with 6,054 neurons
and about 2,400,000 synapses.

4 Discussion

A first and much reduced version of the introduced
simulation system was developed as a desktop application
(Cisi and Kohn 2004), implemented in C++ language. The
expanded present version was developed as a Java
application, running on an Internet server. In the past,
scientific computation was restricted to languages such as
Fortran and C/C++. Nevertheless, Java is proving its
feasibility in high performance computation since technical
consortiums have made improvements in the Java Virtual
Machine. At present, programs written in Java can compete
with programs written in other technical languages, being
superior in some aspects as operating system portability,
open-source library availability and appropriateness for
offering the system as an Internet application.

The model tuning and validation tried to assure
agreement with experimental results at the single neuron
level, as well as with results emerging from the collective
behavior of the spinal cord circuitry and the associated

muscles and nerves. For this purpose, the validation process
considered physiological characteristics of individual neu-
rons, such as input-output dynamics, frequency versus
current relations, firing rate adaptation and others, as well
as collective characteristics, such as the “size principle”
MN recruitment, H-reflex parameters and behavior, isomet-
ric force generation and EMG signal of single motor-unit
and whole muscle. Overall, the most critical parameters to
be adjusted were those associated with the voltage-
dependent conductances.

At the cellular level, most parameter values relied on
measurements obtained from cats, due to the absence of
human data. Even so, the circuitry parameters were
adjusted to yield good quality reproductions of human
electrophysiological data. The individual neuron models
were chosen with either one or two compartments due to
the computational costs of large network simulations. Many
features of real motoneurons were appropriately reproduced
by the developed models. The firing rate adaptation of the
models, the so called initial or early-phase adaptation
(Kernell 1972), resulted very short, dying out practically
after the first or second interspike interval. However,
motoneuron firing rate adaptation has more complex
dynamics (Kernell and Monster 1982; Powers et al. 1999)
than that represented in the simulator and improvements to
the proposed models could increase the models’ realism.

Due to the importance of persistent inward currents
originating in the motoneuron dendrites (Heckman et al.
2005), an interesting incremental evolution of the present
simulator would be the addition of an L-type calcium
channel in the dendritic compartment (Booth and Rinzel
1995). Hopefully, the resulting increase in computation
time would be tolerable. However, the neuronal models in
the simulator could be improved in a wider sense to achieve
an increased realism with the availability of a more
powerful machine (e.g., a cluster) and the use of massively
parallel algorithms (Hines et al. 2008). For example, the
models could include (1) more types of ionic channels in
the soma (e.g., calcium dependent potassium channels,
calcium channels), (2) multiple dendritic compartments to
represent the spatial complexity of the dendritic tree, and
(3) dendritic voltage-dependent ionic channels (Dai et al.
2002; Taylor and Enoka 2004; Bui et al. 2006; Vieira and
Kohn 2007). These would increase the repertoire of
emergent properties obtainable from the simulator at the
neuronal and network levels.

The default numbers of motoneurons in the simulator
follow data from human literature (see Section 2). The
spatial distribution of the motoneurons followed that
described in cats, i.e., longitudinally spread along the spinal
cord. This was similar to that adopted by Maltenfort et al.
(1998) but different from Bashor (1998) and Subramanian
et al. (2005) who adopted a distribution following a square

Fig. 15 Top H-reflexes evoked at every 1 s, the peak-to-peak
amplitude decreasing to a depression plateau. Inset Detail of H-reflex
waveform from the simulation. Bottom Index of recruited MNs in
response to each stimulation pulse
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grid, with wraparound at the four edges. While the latter
choice may be advantageous in terms of visualization when
all motoneurons have uniform properties, it could be more
cumbersome when the motoneurons are modelled with
different dynamics, according to S, FR and FF types.

To keep the computational demand within reasonable
levels, the default numbers of interneurons were adopted
smaller than those estimated in cats (they are not known in
humans). The network behavior was not affected since the
corresponding synaptic parameters were adjusted to com-
pensate for the reduced numbers of interneurons.

At the neuronal network level, several properties arise
naturally in the simulator. For example, in an entirely
deterministic situation, the minimum discharge rate of the
motoneurons in the simulated pool increases with moto-
neuron size (not shown in Section 3). This was found to be
an important issue in the experimental and simulation
studies of Moritz et al. (2005) of the relations between
muscle force variability and mean muscle force. They
employed the model of Fuglevand et al. (1993) that
imposes the motoneuron relations algorithmically.

Other studies in the literature have dealt with the
synchronization between motor-units and its effects on
muscle force (Datta et al. 1991; Yao et al. 2000; Mochizuki
et al. 2005). In the present simulator, motor unit synchro-
nization may be obtained naturally (not algorithmically) by
choosing appropriately the descending drive connectivity so
that a sufficient amount of input divergence guarantees the
required level of motor unit synchronization. The simulator
thus provides a tool for testing the effects of different
patterns of descending inputs on a motoneuronal pool and
also on force generation.

The simulations of the H-reflex and other electrophys-
iological protocols, such as those involving reflex-condi-
tioning by antagonist Ia and homonymous Ib electrical
activation (Pierrot-Deseilligny and Burke 2005), are capa-
ble of providing several measurements not available from
the non-invasive human experiments. For example, it is
possible to characterize all motoneurons’ discharge patterns
in different experimental situations, which are not known
experimentally. Additionally, the qualitative and quantita-
tive effects of inhibition of the motoneuron pool caused by
Ia and Ib interneurons (as discharged by external stimuli to
a nerve) can be analyzed.

Simulation of the dynamics of spinal cord motor nuclei
should be helpful in the interpretation of the experimental
results from humans and in the planning of new experi-
ments. The simulator has been used to create hypothesis on
spinal mechanisms (Cisi and Kohn 2007) and also as a
teaching aid in a graduate course. On the other hand,
theoretical neuroscientists will have a tool to test their
theoretical constructs on neuronal coding, network dynam-
ics and neural information processing and transmission.

The web-based architecture was chosen to (1) offer a user-
friendly interface, (2) reach a wide audience and (3) enable
e-research and e-learning across the Internet. The modeled
circuitry can be totally customized using the user interface.

Additional neuronal structures can be included in the
system just running SQL commands into the database.
Users interested in making changes and adding develop-
ments to the system are invited to download the source
code at the system URL (http://remoto.leb.usp.br).

Future work towards increasing the power of the simulator
may be visualized within two contexts: improvements of the
existing element models and addition of new elements.

In terms of improvements of the mathematical models
employed in the simulator, a few examples were already
mentioned, as the inclusion of more refined motoneuron
and interneuron models. Still another possible improvement
with respect to the motoneuron pools are their positioning
according to more realistic spatial distributions of lumbo-
sacral motoneurons (Vanderhorst and Holstege 1997;
Subramanian et al. 2005). This would include a more
randomized placement of each motoneuron along the spinal
cord axis (this may be partially attained in the present
version of the simulator by choosing a nonzero value for
the motoneuron rheobase coefficient of variation in the
Miscellaneous panel). Another item that may be improved
is that related to the rather rigid stratification of parameter
values adopted for the three types of MNs. This may lead to
artifacts in simulation results that could be avoided by using
a probabilistic approach in the assignment of parameter
values among the MN types.

The descending tracts have been modeled in the
simulator by spike trains with ISIs having a truncated
Gaussian distribution (with selectable mean and standard
deviation) or by realizations of a Poisson point process. An
interesting extension would be to include gamma-distribut-
ed ISIs (Cox and Lewis 1966), as these represent well the
positive skewness of the ISI histograms obtained from
many real neurons. In addition, gamma-distributed ISIs
with orders from 1 to large integers would be able to cover
the range from very irregular spike trains (Poisson point
process) to very regular ones, the latter with Gaussian-like
ISI histograms (central limit theorem).

The models employed in the simulator for motor unit
force and EMG generation are simple but computationally
very efficient. However, their biological reality could be
improved considerably to include effects such as:

1. Sigmoidal relation between force level and MU firing
rate (Kernell et al. 1983; Macefield et al. 1996; Van
Zandwijk et al. 1996)

2. “Catch” property in slow-type motor units (Burke et al.
1970; Otazu et al. 2001)

3. “Sag” property in fast-type motor units (Burke et al. 1973)
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4. Non-isometric force generation for simulations involv-
ing body segment movement (Chin et al. 2006; Siebert
et al. 2008)

5. Initiation and extinction of single fiber action potential
(at the neuromuscular junction and at tendons, respec-
tively) and its volume conduction to the surface
electrodes (Stegeman et al. 2004)

As most of the improvements listed above would require
computer-intensive biophysically-based models, their inclu-
sion may be feasible if one simulates a network with a
relatively small number of elements or if a more powerful
computer is available.

In terms of addition of new elements or features, one
direction for future work is the inclusion of models of the
muscle spindle and Golgi tendon organ to drive the respective
afferent axons that synapse on Ia and Ib interneurons
(Mileusnic et al. 2006; Mileusnic and Loeb 2006). Another
direction is the inclusion of a more complete representation
of the interneuronal network of the spinal cord that acts on
the different motoneuron pools (Jankowska 1992; Bashor
1998; Pierrot-Deseilligny and Burke 2005).

A comparison of the mammalian spinal cord simulators
that have been described in the literature is not an easy task.
This is so because it is usually difficult to present in a single
paper all the details of the simulator, and also because the
simulators are not easily available for testing. Each
simulator has its own strong points because its developers
were more focused on a specific aspect of the involved
physiology or anatomy. For example, the simulator devel-
oped by Subramanian et al. (2005) is very strong in the
anatomical aspects of the cat spinal cord and in the
visualization tools. On the other hand, our simulator seems
to have a stronger focus on the neuronal and synaptic
physiology and is more oriented towards human electro-
physiology. Its interactivity, usability and immediate avail-
ability to any neuroscientist connected to the Web are also
relevant features.
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