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Abstract

A model originally proposed by Akazawa and Kato (1990) for the spinal cord was adopted as prototypical of a
neuronal pool with strong excitatory drive and strong recurrent inhibition. Our simulations of the model have shown
that a strong synchronization occurs between the spike trains in the neuronal pool. This happens because the
proposed model has a single and strong excitatory drive on the neuronal pool. However, usually a multitude of other
randomly occurring synaptic inputs impinge on the neuronal pool and therefore a new investigation was carried out
to study the effects of synaptic noise on the network behavior. The synaptic noise decreased the degree of
synchronization of the neuronal spike trains but on the other hand caused an unexpected decrease in the mean firing
rate of the neuronal pool. A detailed analysis indicated that this phenomenon is due to a combination of two
mechanisms: a saturation of the feedback inhibition and a decrease of the synchronization in the neuronal pool with
synaptic noise. The synaptic noise caused a more frequent activation of the saturated recurrent inhibitory feedback
loop along time, thereby increasing the inhibitory effect on the neuronal pool. © 1998 Elsevier Science Ireland Ltd.
All rights reserved.
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1. Introduction

Neuronal networks have topological features
that are relevant to the several computations they
may realize. A few examples are convergence,
divergence and feedback inhibition (Shepherd,
1990). The latter, also called recurrent inhibition,
is widely found in the central nervous system

(Windhorst, 1996) and is the main topic of inter-
est in the present paper. Akazawa and Kato
(1990) have presented a partial model of the
spinal cord that describes a pool of motoneurons
(MN) receiving a strong descending excitatory
drive and a strong inhibitory feedback from a
pool of Renshaw cells. As their model is one of
the few in the literature that includes spiking
neurons in the spinal cord it was adopted as a
prototype for our studies of neuronal networks* E-mail: andfkohn@leb.usp.br
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with recurrent inhibition. Although the model
(Akazawa et al., 1989, Akazawa and Kato, 1990)
was originally used by the authors to predict
mean rate output of MNs and muscle force for
different intensities of descending drives our in-
tention was to use it for studying the detailed
patterns of discharge of the neurons in the pool in
different situations. Since our simulations indi-
cated a strong degree of synchronization between
the MNs of the pool it seemed quite relevant to
repeat the simulations with added synaptic noise
to mimic the effects of the large number of other
synaptic inputs to the MNs. As in many papers in
the literature, we shall use the term synaptic noise
as the membrane potential caused by a large
number of randomly occurring postsynaptic po-
tentials (PSPs).

In this paper, the above mentioned model will
be used as a prototype of a neuronal pool driven
by a strong common source and with a strong
recurrent inhibition. Simulation results are pre-
sented accompanied by an analysis of the mecha-
nisms behind a rather surprising effect of the
injected noise: a decrease in the mean firing rate
of the MNs. This is surprising because noise
added to isolated neurons causes an increase in
their mean firing rate either if they are silent or if
they are already firing (Guttman et al., 1977,
Buno et al., 1978), something also replicated by
many mathematical models of neurons (Lánský
and Rospars, 1995).

2. The model and the simulator

The model (Akazawa et al., 1989, Akazawa and
Kato, 1990) includes MNs described by extended
leaky integrator models driven by a renewal pro-
cess having intervals distributed according to a
truncated Gaussian. This represents the activity of
the cortico–motoneuronal pathway (CMN), the
truncated-Gaussian leading to a skewed distribu-
tion of interspike intervals. The MNs are sub-
jected to recurrent inhibition. The EPSPs and
IPSPs on the MNs are graded according to their
size, i.e. larger PSPs occur in smaller MNs and
vice-versa. There is an absolute refractory period

and an exponentially decaying relative refractory
period. The recurrent inhibition is simulated by
an equivalent Renshaw cell that receives inputs
from all MNs and sends its output, without delay,
to all MNs. Both the descending drive on the
MNs and the inhibitory feedback from the equiv-
alent Renshaw cell are rather strong, e.g. in the
smallest MNs, the EPSPs and IPSPs have the
same magnitude as the difference between the
resting potential and the resting threshold level (in
the larger MNs the PSPs were about half of those
in the small MNs). The equivalent Renshaw cell
model fires a burst of 40 ms duration with an
intra-burst firing rate that depends on how many
(and which) MNs have fired in a short time
interval, but only up to a certain maximum firing
rate value. For example, if the maximum firing
rate is 500 spikes/s for the equivalent Renshaw
cell, then, in the average, the (almost) syn-
chronous firing of 20 MNs is sufficient to saturate
its firing rate.

The simulator was developed in C language
(Araujo and Kohn, 1996) with graphical outputs
to show the neuronal membrane potential as a
function of time, the simultaneous discharge ac-
tivities of sets of MNs as well as the interspike
interval histogram of any motoneuron in the net-
work. In the simulations without noise, the exact
solutions were used until a threshold crossing was
found. In simulations with noise, the time step
was 0.1 ms, with exact solutions being used be-
tween each time step. The neuronal spike trains
were obtained for a 10 s time window.

The synaptic noise was simulated by a zero
mean Gaussian lowpass noise input (0–44.0 Hz at
−3 dB) which is in accordance with experimental
data (Calvin and Stevens, 1968). The synaptic
noise was generated independently by simple digi-
tal filters for each motoneuron in the pool (Kohn,
1997). The noise standard deviation varied lin-
early from 3 mV for the larger MN to 5 mV for
the smaller MN in the pool.

In all simulations reported here, the network
had 60 MNs and a single equivalent recurrent
inhibitory cell. The simulated descending drive
may also be seen as coming from an equivalent
cortical neuron. For the sake of simplicity, we
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shall keep in what follows the nomenclature
motoneuron pool, motoneurons (MNs), cortico-
motoneuronal (CMN) excitatory drive, Renshaw
recurrent inhibition. However, the context should
be taken as general, as we are in fact modeling
and analyzing an arbitrary neuronal network with
strong excitatory drive and recurrent inhibition.

3. Simulation results

Our main objective is to analyze the effect of
synaptic noise on the mean firing rate of the
motoneuron pool for different mean rates of the
descending CMN drive. The motoneuron pool
mean rate is defined as the mean of the mean
firing rates of its MNs. To be able to isolate the
contribution of the different aspects of the net-
work, we start with an open loop simulation,
where the recurrent inhibition is inoperative.
Next, still with an open loop, the inhibitory input
to the motoneuron pool has a constant mean rate
value similar to that found in the closed loop
situation. Finally, in a closed loop situation the
inhibitory input to the motoneuron pool is acti-
vated by the firings of the MNs themselves. Any
simulation set is composed of a noiseless and a
noisy run and is presented as such in the figures
ahead.

3.1. Without recurrent inhibition

Two cases of open loop simulations were stud-
ied. In the first, there was no inhibitory input
whatsoever, corresponding to the two upper
monotonic increasing lines in Fig. 1 (indicated by
‘w/o Inh’). The lowest of these two lines is the
deterministic case (indicated by ‘w/o N ’) while the
upper line is one for which there was additive
synaptic noise (indicated by ‘w/N ’). As expected,
the neuron pool mean rate increases with increas-
ing drive from the CMN descending pathway as
well as with the addition of synaptic noise.

Next, a periodic inhibitory train was applied to
the motoneuron pool at a fixed rate within the
range found in the closed loop situation. This may

be thought of as a case in which the inhibitory
feedback element was stimulated externally at a
constant rate, without receiving any input from
the motoneuron pool. The same inhibitory rate
was used for the cases without and with synaptic
noise. The two corresponding lines in Fig. 1 are
the lowermost, labeled ‘w/constant rate Inh’. By
comparing the lowermost with the uppermost
pairs of lines, it is clear that the MN pool mean
rates were lower when constant rate inhibition
was applied. More importantly, with constant rate
inhibition, the mean rates with synaptic noise
were larger than without synaptic noise. The two
thick arrows in Fig. 1 indicate the (increasing)
effect on output mean rate the addition of synap-
tic noise in the two conditions.

Fig. 1. Motoneuron pool mean rate as a function of the
descending drive intensity from the CMN pathway. The upper
pair of curves (‘w/o Inh’) correspond to the open loop case
without any inhibition. The uppermost curve (‘w/N ’) in this
pair corresponds to the case where synaptic noise was added
to the MNs. The lower pair of curves (‘w/constant rate Inh’) is
still for an open loop situation but with a constant rate
inhibition acting on the MNs. Again, the lowest curve (‘w/o
N ’) is for the deterministic case while the upper (‘w/N ’) is for
synaptic noise added to the MNs. In both cases, the addition
of synaptic noise caused an increase in the mean firing rate of
the MN pool, as indicated by the two upward pointing thick
arrows.
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Fig. 2. Motoneuron pool mean rate as a function of the
descending drive intensity from the CMN pathway. The upper
pair of curves (‘w/o Inh’) is a repetition of one pair shown in
Fig. 1, in which the feedback loop was open and no inhibition
existed on the MN pool. The lower pair of curves (‘w/Rec
Inh’) is for the closed loop case, with the lowermost curve
(‘w/N ’) corresponding to the case of synaptic noise added to
the motoneuron pool. With an active recurrent inhibition, the
MN pool mean rate decreased with added synaptic noise for
CMN rates less than �240/s, as indicated by the downward
pointing thick arrow.

In order to understand what is behind this
unexpected result, it is helpful to visualize the
spike trains of the MNs and the equivalent Ren-
shaw cell. Fig. 3(a) shows the spike trains corre-
sponding to the simulations without synaptic
noise and Fig. 3(b) those with synaptic noise.
Each figure shows the discharges of MNs 1–20
and 41–60 followed by those from the CMN and
the equivalent Renshaw cell. The latter is seen to
be composed of bursts occurring randomly along
the time axis, usually with a maximum intra-burst
firing rate. The simulations without and with
synaptic noise used exactly the same CMN spike
train. A high degree of synchronization occurs
between the MNs when there is no synaptic noise
(Fig. 3(a)). By comparing Fig. 3(a) with 3(b), it
can be seen that the synaptic noise decreased the
degree of synchronization in the motoneuron pool
and that the bursts generated by the recurrent
inhibition occurred more densely along the time
axis when synaptic noise was present.

4. Mechanisms

If one envisions the system we are studying in
terms of a negative feedback system with mean
rates as the input (u) and output (y) variables,
then a simplistic interpretation of the decrease in
the motoneuron pool mean rate when synaptic
noise is added could be that it is due to the action
of the recurrent inhibition or negative feedback.
To see that this is not so, let us imagine a linear
system with negative feedback having forward
gain G and feedback gain H, as depicted in Fig. 4.

The overall gain between input and output is
G/(1+GH), which means that if the input is only
from CMN then the output mean rate y will be
[G/(1+GH)]uCMN. On the other hand, with
synaptic noise uSYN added at the input, the output
mean rate y will be equal to the sum of two terms
[G/(1+GH)]uCMN+ [G/(1+GH)]uSYN. This ex-
pression shows that the output mean rate may
only increase when synaptic noise is added. This
last result is based on the reports from the litera-
ture, already mentioned in Section 1, that a single
neuron subjected to additive noise increases its
firing rate. Additionally, the results of our simula-
tions shown in Fig. 1 confirm this quite clearly.

3.2. With recurrent inhibition

To compare the behavior of the MN pool mean
rate with and without recurrent inhibition, the
upper pair of curves in Fig. 1 was copied into Fig.
2 as the uppermost pair of curves (marked ‘w/o
Inh’). The lowermost pair of curves in Fig. 2
(marked ‘w/Rec Inh’) indicates the results ob-
tained with recurrent inhibition (i.e. a closed loop
topology with negative feedback). Here, the sur-
prising result is that when synaptic noise is added
to the MNs, there is a decrease in the MN pool
rate for CMN mean rates lower than �240/s.
This is indicated in the figure by a thick arrow
pointing in the downward direction. This property
is quite pronounced in the smaller MNs in the
network and less so in the largest. For CMN
mean rates above �250/s, the motoneuron pool
mean rate increases with synaptic noise.
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Fig. 3. Spike trains of MNs without (a) and with (b) synaptic noise added. Each figure shows the spike trains of MNs 1–20 and
41–60 (from smallest to largest) as well as those of the CMN and the recurrent inhibition element (indicated as RC). The same
CMN spike trains were used for the noiseless and noisy simulations.
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Fig. 3. (Continued)
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Fig. 4. Simplified feedback loop representation of the neuronal
network with recurrent inhibition. All of the variables are
mean rates, uCMN and uSYN corresponding to the CMN de-
scending drive and the synaptic noise, respectively. The output
variable y is the mean rate of the MN pool.

In creating Fig. 5, we tried to keep some of the
features of Fig. 4 in terms of the input mean rate
uCMN and the motoneuron pool mean rate y. By
setting the CMN descending mean rate uCMN, a
train of EPSPs is generated with intervals accord-
ing to a truncated Gaussian density (Section 2).
The motoneuron pool receives this train of EPSPs
plus the train of IPSPs coming from the Renshaw
pool (or equivalent Renshaw cell). In the case of
addition of synaptic noise, this is added to the
membrane potentials of the MNs. The double
lines in Fig. 5 indicate multiple output variables,
basically composing a vector with the spike trains
of each motoneuron in the pool. This vector is
what is fed back to the Renshaw pool. The
dashed block labeled ‘mean rate measurement’
simply measures the motoneuron pool mean rate
to provide an output y similar to that found in
Fig. 4, and was included only to provide an
output y similar to that found in Fig. 4.

By inspecting carefully Fig. 3(a), we note that
the MNs are strongly synchronized and that the
equivalent Renshaw cell discharges its bursts (usu-
ally at a maximum intra-burst firing rate) prefer-
entially at those time instants when the MNs fire
synchronously. When synaptic noise is added to
the MNs, these tend to loose some synchrony,
with the result that the equivalent Renshaw cell
discharges its bursts more frequently, and still at
its maximum intra-burst firing rate (because a
sufficient number of MNs still end up firing ap-
proximately at the same time). If the feedback
element discharges more densely along the time
axis, it exerts a larger inhibitory action on the
MN pool. The interplay of synchronization in the
MN pool and saturation in the negative feedback

So what is an alternative explanation? One
answer could be that each block is actually a
nonlinear system, e.g. exhibiting saturation. How-
ever, that does not seem enough to justify the
decrease in the output variable y because the
nonlinearities (mainly the feedback nonlinearity)
should be able to ‘feel’ that a synaptic noise was
added to the previously existing input uCMN, with-
out confounding the added synaptic noise with an
increase in uCMN. In other words, it seems quite
difficult to find a physiologically reasonable expla-
nation for the phenomenon if one stays with a
model based on mean rates (e.g. like the classical
artificial neural network models). One fundamen-
tal modification required with the model block
diagram is that the feedback should not be of the
mean rate but of all the spike trains of the MNs
in the MN pool. Therefore, one should consider a
6ector feedback (Fig. 5), where the detailed tim-
ings of all the motoneuron spike trains are pro-
cessed by the feedback element.

Fig. 5. Feedback loop representation of the neuronal network with recurrent inhibition with an emphasis on the feedback of the
vector containing all of the N spike trains of the MNs in the pool.
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element (the equivalent Renshaw cell) makes the
negative feedback gain nonlinear and increasing
with the amount of synaptic noise added at the
system’s input (the MN pool). From this, it is
clear in the block diagram of Fig. 5 that the gain
(in terms of mean rates) of the feedback element
changes according to the pattern of the incoming
spike trains, i.e. according to the specific time
evolution of the feedback vector. As the synaptic
noise changes the pattern in the vector output
from the motoneuron pool this can be sensed by
the feedback element. Therefore, in this indirect
way, an additive noise at the input may alter the
gain of the feedback element. Also, in our case, as
the feedback gain increases, the overall gain de-
creases, as also found in our simulations. The
region to the right of abscissa 240/s in Fig. 2
corresponds to the cases where the equivalent
Renshaw cell is firing continuously at a frequency
equal to its maximum intra-burst rate and hence
is equivalent to the lowermost pair of curves in
Fig. 1, where the inhibition had a constant rate.
Therefore, in both cases, the addition of synaptic
noise increases the MN pool mean rate.

5. Discussion

Perturbations of several origins (e.g. synaptic
noise) on nervous systems have been studied for a
long time (Segundo et al., 1994). Sometimes they
may yield effects that are probably quite helpful
for the nervous system such as fidelity improve-
ment and increase in sensitivity, while at other
times they may increase the level of complexity of
the necessary computations. That seems to be the
case in the neuronal network that we analyzed,
whether its output is decoded by coincidence de-
tection or by mean firing rate. In the former case,
the effect of synaptic noise from unrelated sources
is to decrease the probability of coincidences be-
cause the degree of synchronization in the MN
pool decreases (Fig. 3(b)). If rate coding is used,
for a low intensity of the main descending drive
(CMN) there is a decrease in the neuronal pool
mean rate with added synaptic noise (i.e. an inhi-
bition) but an increase for a higher intensity of
the descending drive (Fig. 2). In some settings,

this phenomenon would pose computational
difficulties for the nervous system to figure out
what is happening or what it should do. For
example, in the context of motor output, different
levels of synaptic noise (originating from other
descending pathways and from a multitude of
afferents) would require different responses from
the motor cortex to achieve the same muscular
activation. More specifically, in a task where a
decrease in muscle force is desired, starting from a
condition of low synaptic noise, the occurrence of
a higher level of synaptic noise (arising in a
statistically independent way) would, in some
cases, require an increase in the cortical descend-
ing drive to decrease the muscle force, while in
others it would require a decrease in the cortical
drive to achieve the same effect. As another exam-
ple, if the synaptic noise intensity would be a
signal to be decoded at a later stage, the network
we have studied would have an inverted output
for low rates of the strong drive (CMN) but a
non-inverted output for higher rates of the strong
drive, making the decoding quite complex.

As recurrent inhibition is a common finding in
neuronal networks, the conceptual discussions
presented here should provide a guideline for
animal neurophysiologists, both in the planning
of the experiments as well as in the interpretation
of the results. Our results also showed the impor-
tance of analyzing and modeling the neuronal
networks in terms of the detailed spike trains of
the involved neurons rather than focusing only on
the mean rates of firing. The rich variety of be-
haviors found in nervous systems usually requires
a more complete modeling effort, in which the
patterns of discharge of the neurons involved are
considered in some detail. The nonlinear depen-
dence that we described of a feedback element on
the addition of noise at the input is an example of
the richness of behaviors a neuronal network
model can present.
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