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Abstract Several signal processing tools have been employed
in the experimental study of the postural control system in hu-
mans. Among them, the cross-correlation function has been
used to analyze the time relationship between signals such
as the electromyogram and the horizontal projection of the
center of gravity. The common finding is that the electromyo-
gram precedes the biomechanical signal, a result that has been
interpreted in different ways, for example, the existence of
feedforward control or the preponderance of a velocity feed-
back. It is shown here, analytically and by simulation, that the
cross-correlation function is depedent in a complicated way
on system parameters and on noise spectra. Results similar
to those found experimentally, e.g., electromyiogram preced-
ing the biomechanical signal may be obtained in a postural
control model without any feedforward control and without
any velocity feedback. Therefore, correct interpretations of
experimentally obtained cross-correlation functions may re-
quire additional information about the system. The results
extend to other biomedical applications where two signals
from a closed loop system are cross-correlated.

Keywords Cross-correlation · Closed loop · Postural
control · Velocity feedback · Feedforward · Body sway

1 Introduction

A frequently asked question in studies of human postural con-
trol is whether a feedback control is sufficient to keep some-
one stabilized (Masani et al. 2003; Peterka 2003; Maurer and
Peterka 2005) or if a feedforward control with predictive or
adaptive dynamics is necessary (Fitzpatrick et al. 1996; Gatev
et al. 1999; Morasso et al. 1999).
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The behavior of several variables associated with the pos-
tural control system during quiet stance may be associated
with random processes and hence the tools used both in the-
oretical analyses and in experimental approaches have to be
suited to analyze random signals. The cross-correlation be-
tween the electromyogram (EMG) of leg muscles and the
horizontal projection of the center of gravity (COG) or the
center of pressure (COP) has been used to infer features of
the postural control system (Gatev et al. 1999; Masani et al.
2003). In both papers the cross-correlation indicated that the
EMG preceded the COG and the COP, which were attrib-
uted either to a feedforward modulation of muscle activity
that could predict the load pattern (Gatev et al. 1999) or to a
feedback were velocity information is important (Masani et
al. 2003). Masani et al. (2003) found cross-correlations sim-
ilar to those of Gatev et al. (1999), which were also found
in computer simulations of a posture control system based
on velocity and position feedback. The cross-correlation of
EMG and COG velocity (obtained by numerical differentia-
tion) showed a significant negative peak at large negative time
shifts (around −600 ms) and a smaller positive peak (most
of the times non-significant). They report similar findings
for the simulation studies. Their interpretations are that the
velocity feedback provides a modulation of the muscle activ-
ity in an anticipatory manner and hence that a feedforward
mechanism is not necessary.

In a recent paper the cross-correlation was used in a pos-
tural experiment to study the relations between the EMG
and muscle length and also between muscle length and COG
angle (Loram et al. 2005). In spite of using variables different
from those in Gatev et al. (1999) and Masani et al. (2003),
the basic conceptual issue is similar, which is the study of
time relationships between two random signals in a closed
loop postural control system.

Here, a linear systems analysis of a feedback model with
stochastic inputs is developed which is relevant to studies in
motor control (Fig. 1). The main tool in the analysis is the
cross-correlation function between the EMG and the angle
of the body with respect to earth-vertical (which is directly
related to the COG) due to its previous uses in experiments
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Fig. 1 Block diagram of a model of postural control for quiet stance

studying human postural control. Nevertheless, the analytical
development will be both in the time and frequency domains.
Hence G(ω), or simply G, denoting the frequency response
function of any subsystem of the linear model will be used in
the frequency domain analysis, and g(t), the corresponding
impulse response, will appear in the time domain description.
The random signals will be described by auto- and cross-cor-
relations in the time domain and by auto- and cross-spectra
in the frequency domain.

2 The reference model

Figure 1 shows a basic model that represents parts of the
postural control system in humans during quiet stance. It is
similar to others described in the literature (Peterka 2000;
Loram et al. 2001; Masani et al. 2003; Maurer and Peterka
2005). For mathematical tractability, all the subsystems are
here assumed to be linear and time invariant, without any
transport delays in the loop. The standing human, usually
modeled by an inverted pendulum (Peterka 2000), is repre-
sented by the block Load, with frequency response GL. The
muscle spindle and other proprioceptive afferences (block
Receptors) provide information about the angle � between
the standing subject and the vertical direction with a corre-
sponding frequency response Gr. The afferent inflow to the
central nervous system (CNS) is actually the angle measure-
ment plus a receptor noise. The CNS processes the afferent
inflow with a frequency response Gn, generating an output
which is corrupted by additive neural noise (e.g., due to syn-
aptic bombardment of interneurons and motoneurons). In a
very simplified view, this signal will be the command to the
leg muscles that generate a torque with a frequency response
Gm. Also, in a very simplified interpretation, this input com-
mand u to the muscles is approximated as the EMG that is
recorded experimentally. Finally, there are torque perturba-
tions, either internal or external, represented by the torque
noise. All signals will be assumed to have zero mean, to sim-
plify the expressions.

3 Open loop analysis

If we open the loop in the system of Fig. 1, for example at
point A, the cross-correlation (Cuy) between the EMG, indi-
cated as u(t), and the angle �, indicated as y(t), will be

Cuy(τ )=E[u(t+τ)y(t)]=gm(−τ) ∗ gL(−τ)∗Cuu(τ ) (1)

where E[.] is the expected value operator, gm(.) and gL(.) the
impulse responses of the muscle and load subsystems, and
Cuu(.) the autocorrelation function of signal u. The torque
noise and the EMG were supposed uncorrelated, which is
reasonable in an open loop abstraction. The result in Eq. (1)
says that the cross-correlation (CCR) between u and y is the
convolution of the time-reversed impulse responses of the
muscle and load blocks with the auto-correlation of the input
signal u.

This result will be analyzed for two different cases:

(a) if the input signal u is white, then the cross-correlation
between u and y will be the time-reversed version of
the convolution between the impulse responses of two
causal linear systems, and hence Cuy(τ ) will have val-
ues different from zero only for negative values of τ . In
practice the zero values for positive τ would mean that
they are statistically undifferentiated from zero. There-
fore, in the hypothetical open loop situation, assuming
for the moment that the load system GL is not unsta-
ble, one would measure a CCR where the EMG would
anticipate statistically the signal theta, without the need
to postulate an “anticipatory” system driving the muscle.

(b) if the signal u(t) is not white, then the CCR will be the
convolution of the CCR that would be found in case (a)
with the auto-correlation of the signal u. The resulting
CCR would have nonzero values for positive and nega-
tive τ values but with the peaks due to gm(t) and gL(t)
still occurring at negative time shifts.

4 Closed loop analysis

To avoid unnecessary mathematical manipulations, we sim-
plify the control system to that of Fig. 2, which will suffice for
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Fig. 2 Simplified block diagram, where W and V are uncorrelated noise
sources with arbitrary power spectra. The measured input is U and the
output is Y . The control, load and receptor frequency response functions
are indicated by Gc, GL and Gr , respectively

our purposes. The neural noise of Fig. 1 was merged with the
receptor noise resulting in an equivalent noise process W. The
derivations will be done in the frequency domain and, when
appropriate, the auto- or cross-correlations will be obtained
by Fourier anti-transformation. The noise sources w(t) and
v(t) will be supposed independent (or at least uncorrelated).
The signals in capital letters will indicate their frequency
domain description. To be consistent with the cross-correla-
tion definition in Eq. (1), the cross-power spectral density Suy

between random processes u and y will be taken as

Suy(ω) = lim
T →∞

1

2T
E[UT (ω)Y ∗

T (ω)] (2)

where

UT (ω) = Fourier Transform [uT (t)] (3)

with

uT (t) =
{

u(t) −T < t < T
0 elsewhere

and similarly for signal y.
The analysis of the random signals in Fig. 2 will use finite

Fourier transforms like in Eq. (3), and leave the expected
value and limit operations as indicated in Eq. (2), for the final
step. For simplicity of notation we shall omit the subscript T
and the (ω), e.g., we shall use U instead of UT(ω).

From Fig. 2 we have the following equations:

Y = GLV + GLU (4)

U = −GcGrY + GcW

= GcW − GcGrGLV − GcGrGLU (5)

From (5) we can isolate U :

U = GcW − GcGrGLV

1 + GcGrGL

(6)

Let us define G0 = GcGrGL. Multiplying Eq. (6) by U ∗ and
taking expectation and then the limit as in Eq. (2), we have:

Suu(ω) = |Gc|2Sww(ω) + |G0|2Svv(ω)

|1 + G0|2 (7)

Taking Y ∗ in Eq. (4), multiplying by U and taking expecta-
tions and the limit, we obtain:

Suy(ω) = G∗
LSuv(ω) + G∗

LSuu(ω) (8)

Multiplying Eq. (6) by V ∗, taking expectations and the limit,
and using the fact that w and v are uncorrelated, one gets:

Suv(ω) = −G0Svv(ω)

1 + G0
(9)

Substituting Eq. (9) into expression (8):

Suy(ω) = G∗
LSuu(ω) − G∗

LG0Svv(ω)

1 + G0
(10)

In the open loop case, G0 = 0 and hence

Suy(ω) = G∗
LSuu(ω) (11)

which, gives

Cuy(τ ) = gL(−τ) ∗ Cuu(τ ) (12)

This expression is similar to that already presented when the
model of Fig. 1 was analyzed in open loop. Again, the CCR
between u and y will have peaks of the impulse response
gL(t) appearing at negative values of τ .

We shall next obtain an expression for Suy(ω) as a func-
tion only of the power spectra of the two noise sources v and
w. Therefore, Suu(ω) is eliminated from Eq. (10) by means
of Eq. (7):

Suy(ω) = G∗
L|Gc|2Sww(ω) + G∗

L|G0|2Svv(ω)

|1 + G0|2

−G∗
LG0Svv(ω)

1 + G0
(13)

which results in

Suy(ω) = G∗
L|Gc|2Sww(ω) − G∗

LG0Svv(ω)

|1 + G0|2 (14)

The expression above would be simpler to analyze if the
denominator were unitary, so we shall define new noise sources
w′ and v′ whose spectra are, Sww(ω)/|1+Go|2 and Svv(ω)/
|1+Go|2 respectively. This means that the original noise pro-
cesses would have their spectra altered by a linear system
with frequency response [1 +Go]−1 . With these definitions,
expression (14) becomes:

Suy(ω) = G∗
L|Gc|2Sw′w′(ω) − G∗

LG0Sv′v′(ω) (15)

From Eq. (15):

Cuy(τ ) = gL(−τ) ∗ gc(τ ) ∗ gc(−τ) ∗ Cw′w′(τ )

−gL(−τ) ∗ g0(τ ) ∗ Cv′v′(τ ) (16)

It should be noted that gc(τ ) ∗ gc(−τ) is an even function
of τ and so is its convolution with Cw′w′(τ ). For a simpler
interpretation of the result in Eq. (16), we shall assume that
the noises w′ and v′ may be approximated by white noises
with constant power spectra equal to 1, and that the feedback
is unitary, Gr = 1. Then, Go = GcGL and from Eq. (15) one
gets

Suy(ω) = G∗
L|Gc|2 − Gc|GL|2 (17)
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Fig. 3 Block diagram of simulated system, where different transfer functions were used for Gc by choosing different values for ac and bc, as
described in the text. Noise signal W had a wide band spectrum but V had a spectrum more concentrated in the low frequencies

and from (17), by anti-transformation:

Cuy(τ ) = gL(−τ) ∗ Ccc(τ ) − gc(τ ) ∗ CLL(τ) (18)

where Ccc(τ ) = gc(−τ) ∗ gc(τ ) and CLL(τ) = gL(−τ) ∗
gL(τ) are even functions of τ . Expression (18) shows that
the first term will give a positive peak of Cuy(τ ) at a nega-
tive time shift value and the second term a negative peak at
a positive time shift, both due to causality of each block in
Fig. 2. Loosening the restriction of white w′ and v′ the first
term in Eq. (18) would be smoothed by a convolution with
Cw′w′(τ ) and the second term by a convolution with Cv′v′(τ ),
as evidenced by expression (16).

Therefore, the CCR between signals u and y, or between
the EMG and angle theta in the postural control model, would
typically have a peak at negative time shifts, irrespective of
the existence of a velocity feedback, or an “anticipatory”
feedforward pathway, or still, a predictive or adaptive feed-
back system. More complex cases may arise for different
system and noise parameters, as will be explored by simula-
tions of a basic model.

5 Simulations

For illustration purposes, some simulation results will be pre-
sented of the model in Fig. 2. The model was implemented
in Simulink (Matlab, Mathworks) as shown in Fig. 3, where
Gr in Fig. 2 was taken as unitary. The noise signals w and
v were not white in order to represent better the biological
reality. The subsystems Gc and GL were assumed first order
to simplify matters.

As far as our knowledge of the literature goes, the power
spectra of the noises w and v have not yet been estimated
from experimental data, so we assumed two different spec-
tra for the receptor/neural noise w with time constants 0.01

and 0.1 s and a spectrum for the torque noise v with a time
constant of 5 s. For comparison, noise sources equivalent to
w and v in the literature on postural control simulations have
been used with widely different time constants, e.g. 100 s in
Maurer and Peterka (2005) for w(t) and 0.5 s in Loram et al.
(2001) and 1 s in Masani et al. (2003) for v(t).

The first subsystem in Fig. 3, Gc, would represent a neural
controller composed of a proportional and a derivative term
(if bc �= 0) but without the unlimited gain increase at high
frequencies due to the denominator acs + 1. The load, which
in practice would be typically a second order system with
phase lag (Masani et al. 2003; Maurer and Peterka 2005),
was approximated by a first order system with phase lag,
GL, which will not cause qualitative changes in the cross-
correlation analysis. One could still question if the param-
eters used were within a biologically acceptable range for
a postural control system. In simulations of such a system,
various investigators (Loram et al. 2001; Masani et al. 2003;
Maurer and Peterka 2005) have used roughly similar values
of the moment of inertia, product mgh (mass x acceleration
due to gravity x height of the center of mass), the propor-
tional gain Kp and the derivative gain Kd. Representative val-
ues were adopted as follows: I=66 kg/m2, mgh=650 kgm2/s2,
Kp=1150 Nm/rad and Kd=250 Nms/rad. With these values,
and assuming zero transport delays in the loop of the models
in (Masani et al. 2003; Maurer and Peterka 2005), the closed
loop zero was at −4.60 and the closed loop poles were at
−1.89 ± j2.00. When in the simulated system of Fig. 3 the
parameter values were ac = 2 and bc = 0, the closed loop
poles were −0.75 ± j0.66 and there was no zero. With ac =
0.2 and bc = 0, the closed loop poles were −3.00 ± j1.00
and there was no zero and finally, with ac = 0.2 and bc = 1,
the closed loop poles were −1.00 and −10.00 and the zero
was −1. Therefore, the simulated system had poles and zeros
within an order of magnitude of those used in previous work
in the literature.
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The system in Fig. 3 was simulated for different param-
eter values ac and bc, as shall be specified in the text below
and for two different filters to generate the random signal
w: one with denominator 0.01s + 1, as shown in Fig. 3, and
the other with denominator 0.1s + 1. The simulations were
run with the following features: final time 250 s, fixed time
step 1 ms, fifth order Dormand and Prince numerical integra-
tion method. The normalized and unbiased cross-covariance
function between the two resulting random signals u and y
was computed. To avoid transients in the random signals due
to the zero initial conditions in the simulated system, the first
50 s of simulated signal samples were discarded.

In the first simulation the parameter values for Gc were
bc = 0, ac = 0.2. The CCR between u and y (Fig. 4a) had a
0.56 positive peak at a time shift −0.25 s and a −0.20 nega-
tive peak at a time shift of 0.45 s. Next, for bc = 0, ac = 2, the
CCR between u and y had a positive peak of amplitude 0.60
(Fig. 4b) at a time shift −0.55 s and a diffuse negative peak
(amplitude −0.20) at positive time shifts. This displacement
of the positive peak of the CCR to more negative time shift
values can be explained by taking Eq. (18) as a rough approx-
imation. When making ac = 2, the impulse response gc(τ )
was much slower and hence the function Ccc(τ ) = gc(−τ) ∗
gc(τ ) was more spread out around abscissa 0. This lead to a
much slower waveform in the contribution of gL(−τ)∗Ccc(τ )
to Cuy(τ ) at negative time shifts, making the peak occur at a
more negative abscissa. In a third simulation, bc = 1, ac =
0.2, which can be compared also to the situation of the first
simulation. Now the CCR (Fig. 4c) was more symmetrical
and more concentrated near the origin. The positive peak
occurred at a time shift around −0.025 s, which is an order
of magnitude smaller than when the block Gc only had a pole.
The inclusion of a zero increased the phase advance caused by

Fig. 4 Cross-correlation functions for different simulation parameters.
a bc = 0, ac = 0.2, b bc = 0, ac = 2; c bc = 1, ac = 0.2; d bc =
1, ac = 0.2. Simulation results in a, b, and c used the noise filters
shown in Fig. 3, while in d the filter to produce w was 1/(0.1s + 1).
As the random signals have zero mean the functions above are also the
cross-covariance functions

block Gc, which should increase the phase advance of Suy(ω)
(see Eq. (15) or (17)). By the Fourier theory, a phase advance
in the cross-spectrum should cause a decrease in time shifts
of peaks in the cross-correlation, besides potential changes
in shape. The fourth simulation had the purpose of indicating
the influence of the noise power spectrum on the position
of a CCR peak. Using the same parameters as in Fig. 4c,
bc = 1, ac = 0.2, instead of using a filter with denomina-
tor 0.01s + 1 to generate w, as in Fig. 3, this simulation
employed a filter with denominator 0.1s +1, i.e., the noise w
had less power at high frequencies. The CCR (Fig. 4d) had a
0.43 positive peak occurring at time shift −0.1 s and a −0.3
negative peak occurring at time shift 0.1 s. A narrower power
spectrum for noise w will result in a wider Cww(τ), which
from Eqs. (14) and (16) will wider Cuy(τ ), as the simulations
have shown in going from Fig. 4c to d.

In the next set of simulations, the system parameters were
kept constant, with bc = 1 and ac = 0.2. The noise power
spectra were changed, one at a time. In Fig. 5a, noise w was
generated by filter 1/(0.1s+1) and noise v by filter 5/(0.5s+
1). This means that the simulated system is similar to that
of Fig. 4d but with an increased power of the noise v. The
change in the cross-correlation is substantial, as now, with the
higher influence of the noise v (torque noise) the dominant
peak in the CCR is a negative peak at positive time shifts,
in accordance with expressions (14) and (16). In Fig. 5b the
noise power of w (receptor/neural noise) was decreased in
comparison with Fig. 5a by filtering with 0.2/(0.1s + 1),
the effect being a left shift of the negative (and dominant)
peak of the CCR. In the next case, the CCR in Fig. 5c did
not change much from the previous case, even though, here,
the noise w was filtered by 2/(s + 1), which means that the
plateau power value increased but the bandwidth decreased.
A noticeable difference in the CCR is a small notch near time
lag 0. Keeping the power spectrum of w but reducing the
power in v by using the filter 1/(0.5s + 1) caused a dramatic
change in the CCR as seen in Fig. 5d. In this case there is
a large positive peak at negative time lag with an abrupt fall
near τ = 0 and a slow fall for negative time lags.

6 Discussion

The results presented in this work rely on a linear system
approximation to the postural control system of a standing
human. Actually, the results and conclusions are much more
general, as they apply for any closed loop system which can
be approximated by a linear system. The first part of the
text gave analytical expressions for the cross-correlation and
cross-spectrum between two signals u and y (Fig. 2) that are
counterparts of the EMG and the angle between the stand-
ing subject and earth-vertical in the simple postural control
system model. The second part presented simulations that
corroborated and extended the theoretical predictions of the
first part. Basically, the theory shows that the main peak in
the CCR may happen at negative time lags, independent of
the existence of derivative neural control or predictive or
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Fig. 5 Cross-correlation functions for different noise parameters. In all
cases the system parameters were the same, with ac = 0.2 and bc = 1.
For (a), (b), and (c) the filter that generates v was 5/(0.5s+1) and in (d)
it was 1/(0.5s + 1). In (a) the filter that generates w was 1/(0.1s + 1),
in (b) it was 0.2/(0.1s + 1), and in (c) and (d) it was 2/(s + 1). Very
different cross-covariances can be obtained for the same system, if the
noise properties vary

feedforward postural control. The simulations suggested that
relatively small changes either in system parameters or noise
characteristics may shift the peaks in the CCR by consider-
able amounts (Figs. 4 and 5). These findings do not prove
that there is no feedforward or velocity-dependent feedback
acting in the human postural control system. They may in-
deed be present (Jeka et al. 2004), but the issue is that their
presence or their importance cannot be assessed by the cross-
correlation between the EMG and � (or the COG or COP).

Therefore, in studies of the postural control system, or, in
fact, of any closed loop system, the peak positions in the
CCR should be interpreted with special care. If possible,
external input signals should be applied to the system in an
effort to study specific subsystems as done very elegantly in
(Fitzpatrick et al. 1996). This additional information on spe-
cific subsystems may allow an appropriate interpretation of
experimental cross-correlation functions because many terms
in Eq. (16) will be known (estimated experimentally). Alter-
natively, the experimental cross-correlation could be incom-
patible with Eq. (16), derived from the models in Fig. 1 or 2.
This would then point to the need for a more refined model
and lead to new advances.

Will the results of this paper be valid in view of the many
simplifications that were adopted? The linear approximation
of the postural control system seems reasonable for quiet
stance (Peterka 2002). The simplification of simulating a uni-
tary feedback system has been often adopted in the literature
(Peterka 2000; Masani et al. 2003; Maurer and Peterka 2005)
because it helps in the interpretation and it should not have

induced qualitative changes in the results. The inclusion of
the propagation delays through the afferent and efferent path-
ways (see Fig. 2) could be achieved by multiplying Gr by
e−jωTa and Gc by e−jωTe , where Ta and Te would represent
the delays in the afferent loop and in the central nervous
system plus the efferent pathway. In expressions (15) and
(16) there would be changes in the negative terms associated
with the blocks Gc and Gr with some complications in the
interpretations. Again, these added complexities should not
qualitatively change the general results.

A recent paper (van der Kooij et al. 2005) analyzed a
closed loop model of postural control and showed that the
system identification based on Suy(ω)/Suu(ω) may lead to
poor results, where u and y could be associated with the EMG
and � or other variables in the closed loop control model. No
expression was derived for the cross-correlation function Cuy
(τ ). On the other hand, the derivations of the present paper
dissect the dependence of the cross-correlation function on
the system and the noise characteristics of the postural con-
trol system. The theory and simulations reported here showed
that even a velocity dependent feedback is not required to
explain the experimental findings of previous authors (Gatev
et al. 1999; Masani et al. 2003), contradicting current views
(Masani et al. 2003; van der Kooij et al. 2005).

7 Conclusion

Within the context of studies of posture control, the loca-
tion of the main peak of the CCR between EMG and COG
(or other signals) during quiet stance is dependent on many
factors that include both the system parameters and the char-
acteristics of the stochastic input signals. Due to this com-
plexity, the interpretation of the experimentally obtained
CCRs as to the type of motor control – feedback without
velocity component, feedback with velocity component, feed-
forward with open loop, feedforward with close loop, etc –
may require complementary information. The conceptual
conclusions reached in this paper are valid for other biomed-
ical applications where two signals measured from a closed
loop system are cross-correlated.
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