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Abstract. This is a model of the steady-state influence
of one pacemaker neuron upon another across a
synapse with EPSP’s. Its postulates require firstly the
spontaneous regularity of both cells, whose intervals
are E and N, respectively. In addition, they require a
special shortening or negative “delay” of the interspike
interval by one or more EPSP’s, with a ¥V-shaped
dependence of the delay on the position or “phase” of
the EPSP’s in the interval ; the minimum of the delay
function corresponds to the earliest EPSP arrival
phase (A) that triggers a spike immediately. Finally,
they impose on the variables certain bounds. The
model’s behavior has two main features. The first is a
zig-zag relationship with an overall increasing trend
between the steady-state pre- and post-synaptic dis-
charge intensities (Fig. 7). The zig-zag is formed pre-
dominantly, if not exclusively, by segments with po-
sitive slopes that are rational fractions. Passage from
one such segment to others is negatively-sloped (“para-
doxical”), involving staggered positively-sloped seg-
ments whose details are unclear for weak presynaptic
discharges and discontinuities for intense discharges.
The same postsynaptic intensity may result from se-
veral presynaptic ones; the maximum postsynaptic
intensity may reflect refractoriness, or the earliest
instants of immediate triggering. The second main
feature is the “locking” of the discharges in an in-
variant forward and backward temporal relation. With
at most one EPSP per postsynaptic spike, locking is
always present. If the presynaptic interval E is in the
closed {rN+A,(r+1)N} range, locking is 1:r+1, ei-
ther stable at a greater-than-A phase or unstable at a
smaller one; arrivals at integral multiples of N do not
affect the postsynaptic intensity. If E is in {rN,rN + i}
(r>0), locking is at other ratios (e.g., 2:3) and less
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apparent. With more than one EPSP per spike, when E
is below bounds that depend on the interspike interval
and the point of earliest triggering, locking happens in
the simple s':1 ratio (s'=2, 3, ...) and 1s stable; when
E is above those bounds, there are E ranges where
locking is in other ratios (e.g., 3 : 2) and ranges where
behavior is unclear. The validity of any model is based
jointly upon an a priori judgment as to whether
postulates depart reasonably little from nature, and

‘upon an a posteriori experimental comparison of mod-

elled and real behaviors. The model’s domain of
applicability depends on the specific embodiment, each
of the latter tolerating characteristically each depar-
ture. The present model will be evaluated in the
crayfish stretch-receptor neuron (Diez-Martinez et al,,
in preparation). The model is applicable to any physi-
cal system that complies with its postulates, and
evidence compatible with this notion is available 1n
many disparate fields. It illustrates the modelling path
to a scientific proposition, other paths being inference
from experimentation, or deduction from premises
acceptable at other approach levels (in this case, for
example, from that of synaptic mechanisms). The
periodicity postulates set this model within the ca-
tegory of those for oscillators. The notion of an
oscillator has a far broader applicability than appears
at first sight, since all physically realizable systems
have some predominant output frequency, 1e., to a
certain extent are oscillators.

Introduction

The present communication has two main purposes.
One is to extend to an excitatory synapse a model of
the stationary effects of PSPs that impinge regularly
upon a pacemaker neuron; the counterpart for an
inhibitory junction is described elsewhere (Kohn,
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Fig. 1A-E. Discharges with at least one postsynaptic spike between two EPSPs (Situation I). Here, as in Fig. 5: upper record, presynaptic or
EPSP discharge ; lower record, postsynaptic discharge. An EPSP arriving at an interval, or “phase” ¢, from the previous spike shortens the
interspike interval by an amount or “delay” 4, as illustrated in Fig. 2A. A-C Beginning of EPSP discharge: initial phase ¢, smaller (A ; Case
I-A) or larger (B, C; Case I-B) than A; presynaptic interval E smaller (B; Case I-B-a) or larger (I; Case I-B-b) than rN+ 4. D and E Locked

discharges: at 1:r+1 (D) or 1:7 (E)

1980; Kohn et al., 1981; Segundo, 1979). The other
is to discuss certain issues inherent in modelling
efforts in general, and particularly in those of interact-
ing oscillators. -

Description

Postulate i requires that the pre- and post-synaptic
cells, if undisturbed, fire at invariant intervals E and N,
respectively (e.g., Fig. 1). Other postulates will be pre-
sented as they become necessary. Two situations,
differing in the relative firing intensities, will be exam-
ined: namely that (I) where there is at most one presyn-
aptic spike or EPSP for each postsynaptic spike, and
that (II) where there is more than one presynaptic
spike or EPSP between two postsynaptic ones. The
term “intensity” is given a special meaning here, re-
ferring to a feature inherent in our intuition of a point
process, namely, to whether points are few and far
between, or close and tightly packed: it thus implies
jointly numbers and intervals, ie., the counting and
interval descriptions of any point process (Cox and
Lewis, 1966).

I. At Most, One EPSP for Each Postsynaptic Spike

Additional postulates are required. Postulate ii: The
EPSP elicited by the presynaptic spike shortens the
interval separating the postsynaptic spikes between
which it falls, thus advancing the next spike (it does not
affect other intervals). Postulate iii: The advance, or
negative “delay”, 6 is a V-shaped function of the
position, or “phase” ¢, of the EPSP with respect to the
last postsynaptic spike. The “delay function” is thus
piece-wise linear with two straight segments (Fig. 2A):
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Fig. 2. A Delay function. On the abscissa, the position of the EPSP
with respect to the last preceding spike, or “phase” ¢; on the
ordinate, corresponding shortening or “delay” 4. The relation has
two linear segments 0Q through the origin and decreasing with

slope —— }' ; QN with slope 1 and through point {N,0}. Their

mtersectlon corresponds to the earliest phase where an EPSP arrival
causes immediate firing. B Phases that follow a particular initial
phase @, if the presynaptic intervals E differ (Situation 1). Depending
on whether E is greater than, equal to, or smaller than E* (5), phases
increase surpassing 4, remain invariant (locked), or decrease becom-
ing negative, respectively

the first 0Q corresponds to phases from 0 to 4
(0 < ¢ < A) starts at the origin and has a negative slope

A= AN 1—- % <0; the second QN corresponds to

phases from A to N (A< ¢ < N), intersects the abscissa
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at N, has a positive slope of 1, and implies that EPSPs Range (2) is between {rN,(r+1)N} and

arriving at or after A immediately trigger a spike. 1is a
characteristic of the synapse, and must be between 0
and N (0<AZN).

Two variables (represented in Fig. 3) must be con-
sidered: they are the phase of the first EPSP, or
“initial” phase ¢,, and the presynaptic interval E.
Indeed, both the instant when a presynaptic cell starts
firing, ie., the initial phase, and its average intensity
have biological significance. Behavior can be analyzed
by fixing any one of them at representative values and
then examining what happens when the other is mo-
dified systematically. In the present communication,
we first fix ¢, and modify E; subsequently, the alter-
nate approach (confirmatory of the first) is used to
explain conclusions of general interest. Figure 3 is
crucial for clarification of the argument of either
approach.

When the initial phase is fixed, the argument is
contingent upon ¢, being larger or smaller than 4; two
general cases will be considered. Figures 1A-D illus-
trate the convention that the first EPSP occurs no
earlier than postsynaptic spike number 0 and no later
than 1, and that the second one relates similarly to
r+1 and r+2; r+1 is the number of spikes between
EPSP’s 1 and 2, and therefore cannot be 0 in case I (i.e.,
r=0,1,2,...).

(A) 0< ¢, <4 (lower band in Fig. 3, segment 0Q in Fig.
2A). In this case the delay is expressed by:
A—N ( 1— N

5="—¢= 7)¢ (A— N <8 <0). Q)

These definitions imply that E must be between
(N+6,—¢,)+rN and (N+8; —¢,)+(r+1)N which,
substituting §, by its value as a function of ¢,, means
that:

(r+1)N-%¢1<E<(r+2)N—%¢1. @

{(r+ )N, (r+2)N} when ¢, is between 0 and 4 (Fig. 3).

Figure 1A justifies the following equality since both
sides represent the time from spike 0 to the second
EPSP:

¢, +E=N+06,+rN+¢, 3)

substituting J, :
N
¢2=71—¢1+E—(r+1)N. (4)

An identical expression with ¢, ; and ¢, instead of ¢,
and ¢,, respectively, gives the “new” phase as a
function of the “old” one at a given E : Fig. 4 represents
¢, for all ¢, and for three E’s. ¢, is a meaningful value
only if 0<¢,<N, and this happens in I under con-
ditions (2).

From (4) one deduces also that the next phase will
be greater than, equal to, or smaller than the present
phase, depending on E being greater than, equal to, or
smaller than, respectively, a value E* [within range

@)1:
E*=(r+1)N+ (1— %)q&l. )

Three conclusions are to be drawn (Fig. 2B). Firstly,
that if E equals E*, all succeeding phases will equal ¢,.
This situation is called “locked” and E* “locking
interval” (see below ; Kohn, 1980; Segundo, 1979): the

locked delay will be (1 - %) ¢,,and the first spike after
each EPSP follows the latter by N+ (1 - %) ¢,

=(1—%3)N. E* is in the range {rN+A,(r+1)N}

(Fig. 3). Secondly, that when E is smaller or greater
than E*, the successive phases @, ¢,, s, ... will con-
stitute a monotonic series, either decreasing until a
value becomes negative, or increasing until a value
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Fig. 4A-E. Successive phases and locked phases (stable or unstable) for different presynaptic intervals (Situation I). A “Old” phase ¢, on
abscissae; “new” phase ¢;,, on ordinate at left; presynaptic interval E on ordinate at right. Each heavily traced curve corresponds to the
particular E at its intersection with the rightmost axis; a locked condition (@, =@, circles) exists if and where a curve intersects the 45° line
(dot and dash). Curve b for 7N + A < E <(r + 1}N has two intersections with the 45° line : one (black circle) with slope 0 and therefore stable, and

N
another (open circle, ¢*) with slope N

Fl >1 and therefore unstable; a for E=(r + 1)N, has one that is stable to its left ; c for E=rN + A, has one

that is stable to its right and unstable to its left; d for ¥N <E<rN+4, has none. B Successive phases for Curve b rN+A<E<(r+1)N,
decreasing when ¢, <¢? or increasing when ¢, >¢?* C and in either case arrivingata 1 :r+1 locking. D and E. Successive phases for Curve d,
rN <E<rN + 4, early ones, D, and those in a three-EPSP cycle E

surpasses 4, respectively. A locked phase is “unstable”  always similar than that (r+ 2)N — N ¢, in (2) because,
relative to E when even the slightest modification of E A
will be followed by phases that diverge from it. Thirdly,
that there will be at most a single unstable locked  pumber — N( 1— ﬁ), and is always larger than the
phase. As explained when it is E that is fixed, the range A N

IN+A<E<(r+1)N ©) lower bound which it exceeds by - ¢,. Consequently,

is characterized by two meaningful locked phases, an
unstable one ¢* (11) less than 4 achieved only if the
initial phase ¢, happened to equal it, and a stable one
E—rN larger than 4 achieved when ¢, was no smaller
than 1. The relation of these bounds to those in (2)
depends on ¢,. The difference between the lower ones
is:

subtracting the latter from the former, gives a negative

range (2) for E when ¢, is fixed always contains a
range wherein there would be meaningful values of ¢*
were it E that was fixed. Moreover, the E that preserves
the fixed initial phase, i.e., E* (5) is within range (6);
indeed, the difference between E* and the lower bound
rN + 2 has the sign of the positive quantity (N +¢,)?, .
and that between E* and (r+1)N is a negative

. quantity.
2 —
N+ ,1)_{(,+ I)N_ﬁ(pl}:M (B) A<$,<N (upper band in Fig 3). In this case
A A (segment QN in Fig. 2A) § is expressed by:

whose sign is that of the numerator. Hence, the lower §= ¢—N (A—NSé §0i‘.

bound in (6) will be 1 i
und in (6) will be larger than that in (2) only when first EPSP (Fig. 1B, C) triggers spike 1,and the next

o> (1— %) A. The upper bound (r+1)N in (6) is one arives later than r+1 and no later than r+2.




These conventions imply that:
IN<EZ(r+1)N v

with r=0, 1, ... . In addition, and so as to have at least
one spike per EPSP when r=0, E cannot be smaller
than A. Figure 1B justifies the equality:

¢, +E=N+35,+rN+¢,.
Substituting 4, :
$,=E—N (8)

that, because of (7), will necessarily be between the
required values of 0 and N. The second phase ¢, will
be greater, equal to, or smaller than A, depending on
whether:

EZrN+4. )

(C) Different Cases. In the following paragraphs cases
I-A and I-B where ¢, was fixed shall be broken up into
partial cases contingent on where E falls in its inevit-
able ranges. The E range for I-A, with ¢, fixed between

0 and 4, is {(r+1)N—%¢,, (r+2)N-— _1;_4)1} [(2),

rhomboid II "H” H in Fig. 3]. Case I-A-a (triangle
II'H) involves

(+DN- 36, SE<C+DN+(1-5)8,=E%. (10)

Throughout (10) E will be less than E*, i.e., to the left of
line I'H. Therefore, phases will form a decreasing series
(see above) @, >¢@,> ...: this means that eventually,
after i— 1 EPSP’s with positive phases, an ith EPSP will
arrive with a negative phase ¢, (Fig. 2B, lower arrow).
The ith EPSP will precede the (r+ 1)th spike, since
phases are measured with respect to it : it will, however,
follow the rth spike because E exceeds rN [see bounds
(1)]- The positive phase with respect to the rth spike is
called ¢; (¢;=N—¢,). E exceeds the E* for this
situation that is in the {(r—1)N + 4,7N} range: hence,
either ¢, or a subsequent phase surpasses 4, with a
switch to Case I-B (i.e., a jump across segment I1”). The
boundary rN + A between the two I-B partial cases will
be to the left of range (10) or within it, i.e, rN+ 4
will be no greater or greater, respectively, than

(r+1)N— -I;d;,, depending on whether ¢, < (l - %) A,

or ¢, > (1 - —:l’) A, respectively. If ¢, < (1 - %—) A (Case

I-A-a-i, triangle J'J"H, I-A-a-i switches to I-B-b which
(see below) implies a 1:r+1 locking.
In the alternate case (trapeze II'J"J’), ¢, exceeds

(1 - %) A, and rN + A separates (10) into two portions
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(triangles II'J', I'V"J'). When E<rN+A (triangle
I'J"J, also called Case I-A-a-i), the switch is to I-B-b
which implies a 1:r+1 locking. When E2rN+24
(triangle II'J, Case 1-A-a-ii). The switch is first to
I-B-a and then back to I-A-a-i.

If E=(r+1)+(1—%]—)¢1=E* (5) (segment I'H),
there is immediate 1:r+1 locking at phase ¢, (Case
I-A-b). Case I-A-c involves (r+1)N + (1 - %r-) ¢, <E

Z(r+1)N (triangle I'I"H). E being larger than E* (see
above), successive phases increase and eventually sur-
pass A, passing to Case I-B in range {rN,(r+ 1)N} (see

below). Since
N

(r+1)N + (1— %{—)qﬁl >(r+ 1N+ (1- -1;-)/1=r1v+1,

I-A-c switches to I-B-b with 1 .r+1 locking.
Case I-A-d involves r+ ) N<E<(r+2)N— %{_(pl

(triangle I"H"H). E exceeds E*, 50 successive phases
increase and eventually surpass 4, with the ith EPSP
triggering immediately (Fig. 2A); calling this spike 1,
the next one arrives E, and therefore more than
(r+1)N, time units later (r=0,1,2,...). It will fall
therefore between spikes r+2 and r+ 3: this is a switch
to I-B within the range {(r+1)N,(r+2)} where the
boundary (r+ 1)N + 4 separates partial Cases a and b.
Two possibilities depend on whether ¢, exceeds or

does not exceed (1 - %) A. When ¢, > (1 - ‘1};7) A (Case
I-A-d-i, triangle I"J""J"'), the upper bound
(r+2)N - 1—}4)1 is less than the boundary: therefore,
this case switches to I-A-a (in the corresponding range).
When ¢, < (1 - %)}. (trapeze J”'J""H"H), the upper

bound surpasses the boundary. If, then (r+1)N<E
<(r+1)N+2 (Case I-A-d-i, rectangle J"'J""H'H),
there is a switch to I-B-a. If, however, (r + )N+ A<E

<(r+2)N- %d) 1 (Case I-A-d-ii triangle J”"H'’), there

is a switch to I-B-b with 1 :r+2 locking.

When ¢, was neither smaller than A nor greater
than N (Case I-B), the range for E was {rN,(r+1)N}
(rectangle KK''I''I), with the first EPSP triggering
immediately spike 1 and the next one not arriving
earlier than spike r+ 1 nor later thanr+2 (r=0,1,...).
If, on the one hand (Case I-B-a, Fig.1B) rN<E
<rN+4 (rectangle KK'I'l),the second EPSP will
arrive with a phase ¢, between 0 and /, implying a
switch to I-A with ¢, =E—rN now playing the role of
initial phase ¢,. When E is within the rightmost
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N+’
switch to I-A-a-ii (triangle IT'J’) which will switch back
to I-B-a and so on; when in the left leftmost portion

portion {rN + N2 rN +l} of its range, there is a

{rN, rN+ N—l the switch is to I-A-d-i, this time in
N+A

the range {rN,(r+1)N} (triangle 1J'J)}: either case in
turn switches back to I-B-a. This is true regardless of

the relation of ¢, to (1 - %) J, since E does not exceed

rN+A. If, on the other hand (Case I-B-b, square
K'K"I'I', Fig.1C), rN+A<EZ(r+1)N, the second
phase is no smaller than A. Consequently, ¢, and all
successive phases will be identical to ¢,, implying a
1:r+1 locking with:

¢*=E—rN 5*=E—(r+1)N. (11)

This locking is “stable” relative to E because it is re-
established after any sufficiently small change of E, i.e.,
one within range {rN+A,(r+1)N}. The first spike
following an EPSP will be at an interval N from it.

Graphical Analysis. Expression (4) and (8) compose
non-linear, piecewise-linear difference equations of first
order in ¢, (i=1,2,...). Figure 4 plots the next phase

®;4 1 Or ¢, as function of the present one ¢, or ¢,. The

elaboration above indicated that for the first segment

0Q this graph is oblique with slope % > 1, and for the

second one QN it is horizontal at E—rN. The vertical
position of each curve depends on E. This is reflected
by two intercepts: that on the ordinate, ie. ¢,,, for
¢, =0 equals the difference E—(r+ 1)N which can be
either positive or negative; that on the vertical axis on
the right, i.e., ¢, , for ¢,= N equals the value at which
E was fixed. Points (depicted as circles) where the
graph for a fixed E intersects the dotted ¢,,, =9,
diagonal line identify “locked” or “equilibrium” phases
¢*. A locked phase is achieved after starting at a
particular initial phase ¢,. When, starting in the close
vicinity of ¢,, ¢* is still achieved it is called “asym-
ptotically stable relative to ¢ but, if successive phases
diverge from it, ¢* is called “unstable”. The condition
of asymptotic stability of a ¢* in a first-order difference
equation (Bernussou, 1977) is that the absolute value
of the derivative at the point be no greater than 1:

Gi+y
09,

Curves a and c in Fig, 4 are at the extremes of, and b is
within, a range where graphs intersect twice the di-
agonal. The horizontal segment provides one locked
phase at E—rN (black circles), stable because of the 0
slope. The oblique segment provides another locking

¢*

<1.

phase ¢¥, unstable because of the greater-than-1 slope.
¢¥ derives from (4) after making

bi=ti=et: pt= 1N (114)

When E is fixed, there will be at most one ¢¥. This
value, which always exists since 1— %#0, is mean-
ingful within the present context, i.e., between 0 and 4,
only when E is within the range {rN+A4,(r+1)N}
identical to (6) (segment HI' in Fig. 3). There is a
reciprocal relation between E* (5) and ¢% (11), in the
sense that each guarantees locking if the other is fixed.
Curve b is within this range: the dotted trajectories in
Fig. 4B illustrates that after fixing E if the initial phase
is smaller than ¢%, successive phases decrease and
eventually ¢, achieves a negative value, The trajectory
goes successively from ¢, on the abscissa up to the
graph, horizontally to the corresponding ¢, and, by
way of the 45° line back to the abscissa ; likewise from
¢, to ¢,; and so on. Trajectories in Fig. 4C illustrate
that if ¢, > ¢%¥, phases increase and eventually surpass
A. The corresponding arithmetic consists in calculating
the successive differences between phases and ¢7.
¢,— ¢%, by substituting the expressions (4) and (11),

can be shown to equal %(fﬁl—q&’f); hence, ¢,—o¥

N

2
= (7) (¢, — ¢7); and eventually:

bies-9t=(}) @0

As i increases, this expression increases preserving the
sign of the first difference. Hence, 1:r+1 locking
occurs exclusively with E in range (6). Curve d is in a
range with no locking phase. Figure 4D illustrates the
phases from an arbitrary ¢, to ¢4 > A (with immediate
triggering) and ¢,=E—rN. Figure 4E illustrates that
starting at ¢ a full cycle of 3 EPSP’s returns to E—rN
at ¢,,, the locking ratio being 3 :3r+2.

“Locking” refers to the invariance of the timings of
EPSP’s and spikes relative to each other, i.e., to the fact
that the individual EPSP is always preceded and
followed by spikes at characteristic intervals. The
probabilistic aspects of the “locking” concept are
discussed by Kohn (1980). The stable 1:r+1 locking
in Case I-B-b where E is in the closed range {rN + 4,
(r+1)N}, is arrived at either directly after fixing
A< ¢, <N or indirectly after fixing 0<¢, “1. Hence
the relation between the pre- and postsynaptic in-
tensities, i.e., E and N, is the*crucial issue. Such locking
is represented in Fig. 1D, which illustrates that there is
a single kind of postsynaptic (r+ 1)-order interval J, , |
formed by one shortened first-order interval following,




preceding, or inserted among r natural ones. All j,,
thus equal (N +6*)+rN=(r+1)N +6*, and so does
their average J,,,. Substitution of 6* by its value in
(11), or Fig. 1D, shows that

Jr+1=jr+1=E (12)

and therefore J, = E/r+ 1. After a small decrease of E
that remains no smaller than rN+A another, still
1:7r+1, locking is established with a new (r+ 1)-order
average interval J.,,=E <E=J,,: there is, there-
fore, a monotonic discharge intensification within the
segment. A certain decrease will carry E to E' in the
range {(r— 1)N +4,7N} and to a 1 :r locking (Fig. 1E),
with J'=E' and J,=E/r. The shortening from the
smallest E with 1 : 7+ 1 locking to the longest with 1 :7,
i, from rN +4 to rN, implies an increase in the first
rN+4 N-2
=N-—

r+1 r+1
there is a “paradoxical” intensity decrease on passing
from one segment to the next, ie., from 1:r+1to1:r.

A 1:r+1 stable locking occurs when E in the
{N+A,(r+1)N} range: the corresponding postsynap-
tic average interval of first order J, is in the
{N - %_T'l, N} range. This means that EPSP’s arriv-
ing at integral multiples of N, i.e., N, 2N, ..., will not
affect the postsynaptic intensity. As r tends to infinity
when the presynaptic discharge intensity decreases, the
postsynaptic upper bound tends to N, ie., effects are
smaller and smaller ; on the other hand, when the EPSP
intensity increases, r becomes O and locking is 1:1
within pre- and postsynaptic bounds A and N. A4n
EPSP interval shortening from the lower bound rN + A
inthe 1 :r+1 segment to the upper bound of any one of
the lower order segments leads to a postsynaptic interval
+1
corresponding average rates with presynaptic on the
abscissae and postsynaptic on the ordinates.

The pre- vs. postsynaptic intensity graph regions
with negative overall slopes and without overt locking
are referred to as “interposed segments”, as they were in
the case with IPSPs (e.g. Kohn, 1980; Segundo, 1979).
Contrary to that case, however, it is they that exhibit
the intensity relation that, opposing the general trend
and a naive intuition, are called “paradoxical”. Such
segments occur with E within the {rN,rN+ A} ranges
(r=1), independently of ¢,. This means that between
two successive EPSPs there will be at least r and at
most r+1 spikes: in turn, this implies that all phases
measured with respect to the (r+ 1)th spike are within
a range that although unspecified is bounded, since it
must be contained in the {—N,N} interval. There
being an endless number of phases, either they are

order interval from to N. Hence

lengthening from N — . to N. Figure 7 displays the
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distributed uniformly, or some are more frequent thus
implying some degree of locking. Rescigno (1978)
demonstrated that regardless of the periods involved a
regular input to, and the output from, a certain class of
oscillators will inevitably either lock or approach
locking. Glass and Mackey (1979) discuss the issues
relevant to the phase-locking observed in a system
(where “activity” increases linearly with time and is
reset to 0 as soon as a threshold is achieved) when the
threshold is modulated sinusoidally. Numerical studies
based upon analytical considerations showed that two
critical parameters reflected ratios, one of amplitude
(threshold modulation to its average) and the other of
frequencies (that of the oscillator were the threshold
constant to that of the modulation). When their pro-
duct was high, stable phase-locked patterns occurred
practically always: many areas represented simple
modulation-to-oscillator frequency ratios, but between
them areas with more complex ratios were found.
When their product was low, few lockings appeared..
These results agreed with their topological consider-
ations which also predicted the existence of irregular,
hard-to-describe dynamics in a Cantor set of measure
0 and therefore unobservable in simulations. Glass and
Mackey (1979) further point out that, since any real
system must have some noise, the latter should expand
this domain and it should be possible to encounter the
irregular dynamics: this may well be the case in, for
example, crayfish stretch receptor neurons (Kohn et
al., 1981).

The following considerations constitute an appli-
cation and elaboration of their conclusions to the
present compatible model. All situations described
above as without locking imply first E within the
{rN,rN +A} range, and second a passage in their
evolution through Case I-B-a, ie., imply some EPSP
with a phase ¢; between A and N: this holds for 1-B-a
itself, as well as for I-A-a-ii and I-A-d-i. Consequently,
the EPSP that follows the ith will necessarily have the
phase E—rN (see above); this, in turn, means that
every switch into I-B-a creates an invariant (for each E)
situation, that therefore will be followed by a sequence
of pre- and postsynaptic firings that are invariant also,
extending from one entry into I-B-a to the next. The
main conclusion to be drawn is that, since only that
phase sequence and no other will occur, it is legitimate
to say that locking is present always (using the lock-
ing criterion discussed by Kohn et al., 1981). The
between-discharge correlation will exhibit a periodicity
that depends solely on E, N, and A. Since the numbers
of EPSPs and of spikes in each period are integers, the
ratio of the corresponding intensities will always be
rational, and there will be a countable number of them.

The “reference”, i.e., the start and end, point in the
cycle will be the EPSP at phase E—rN referred to as o
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(Fig. 5). Preceding it necessarily will be one whose
phase ¢_, is within the immediate triggering range
represented as {A—N,0} in Figs. 4A and 6. This
inevitable pair brackets r spikes, not counting the
triggered one (Figs. 1B and SA). Phase ¢_, must be
preceded by the phase ranges ¢ _,, ¢_; in Table 1, as
calculated on the basis of (4). Each E determines a
reference phase ¢,=E—rN, and a set of bounds. ¢,
can never be in the inmediate triggering range because
rN<E<rN+A4; it can be, however, in other ranges,
and under each bound in Table 1 is the E whose ¢,
corresponds to it. :

If ¢, is in the ¢_, range, the cycle that follows
consists exclusively of the inevitable pair, namely the
triggering one in the ¢_, range and that at ¢, closing
the cycle. The number of spikes in the cycle is r+1

(including the triggered one) up to the first EPSP, plus
r between the latter and the last EPSP (see above): ie.,
2r+1, so locking will be in the 2 : 2r + 1 ratio. The pre-
vs. postsynaptic intensity graphs (Fig. 7) will present a
positively sloped segment whose ranges are (13) in
Table 1 for the abscissa, and the appropriate pro-
portion for the ordinate. The upper bound of the ¢ _,
range is the X-intercept A’ in Fig. 6. The bounds for

T

2
the extreme E values are {%,A} -and {0,}.—/1—— .

For E=rN+ ﬁ—;, the upper bound equals tl:e

X-intercept. The width of the ¢_, range is A— %—,

independent of E: it tends to O when A approaches its



Table 1
Lower bound Upper bound
6, N-i N
by —~(E—rN-2 E—rN) 24
-2 TETIEAR "N (13)
A i
—_— N —_
E (rN+A)N+l (r +N)N+/1
N+i N*+i714 N+2A
é_s —{(E—rN) % %—(E—rN)T+N+). (14
AN?+242) N2+Ni
N+ —————— N+Ai——
E r +N2+Nﬂ.+/12 TN+ N*+Ni+4?

possible limits 0 and N, because the bounds both
converge to 0 and N, respectively.

If ¢, is within the ¢ _, range (14) in Table 1, the
cycle consists of 3 EPSPs (Fig. SA), one with a phase in
the ¢ _, range, plus the inevitable pair. If, on the one
hand, E is close to rN (Fig. 6A), the ¢ _, range is to the
left of the ¢ _, range, in the region of negative phases.
Hence, there will be r spikes up to the next EPSP at
¢ _,, while from the latter to the end of the cycle, there
will be 2r+ 1 (see above): locking is 3 : 3r + 1. If, on the
other hand, E is close to rN+4 (Fig. 6B), the ¢_,
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range is to the right in the region of positive phases.
Hence, there will be r + 1 spikes up to the next EPSP at
¢, and 2r+1 thereafter: locking is 3:3r+2
(Fig. 5B).

We chose to not pursue this further, partly because
the algebra became cumbersome, and partly because of
the difficulties in resolving the detailed behavior, as
well as the relations it implied between N, A, and E.
Important issues remain to be clarified : for example, the
bounds of several ranges, their relative positions, the
and E values for which they are meaningful, the pre-
sence or absence of a monotonicity with E of the
slopes, etc. Partial answers that were derived suggest
certain comments.

The ¢_, and ¢ _, ranges have no common point
(Fig. 6), leaving a space (B'A4, or A'B) between them.
This implies that when E moves by small steps from an
E that determines a locking initiated at ¢_,, ie.,
2:2r+1 to one initiated at ¢_,, say 3:3r+1, other
lockings must intervene. Moreover, a trajectory (dot-
ted lines) that, corresponding to a particular E, passes
through B'A4 or through AB; comes from that between
the ¢_, and ¢ _, ranges, and proceeds by skipping to
the other side of the A4’ ¢ _, range. There is an endless

number of fractions of the form E_p?‘-l- (g <p) between
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2:2r+1 and 3:3r+ L. It is unclear to us which ratios
are swept on passing from the E with 1:r locking to
that with 1 :r+1, as well as which are their order and
corresponding E ranges. If all fractions are swept, some
must have vanishingly small ranges. If only some are,
ie., if there was a bound on the number of EPSPs per
cycle, different sets would imply different properties:

the set { s
pr+q
a large even number with several prime factors, and

where fractions with extreme g’s exhibit small ranges,
would sweep with decreasing slopes practically from
l:rtol:r+1.

qg=1,...,p— 1}, for example; where p is

I1. More than One EPSP for Each Postsynaptic Spike

It is opportune to stress here two important points,
even though both are discussed elsewhere (Diez-
Martinez et al, in preparation; Kohn, 1980): both
imply that modelling of situation II is more complex,
and inevitably will be less firmly grounded upon
reality, than that of I. The first is that the parameters
involved (see below), influenced in each case by the
PSP’s in the interval, are joint functions of the latter’s
phase, number and timing (i.., span, rate and pattern
in the sense of Segundo et al., 1966), and there is scant
experimental evidence as to what actually happens:
postulates are then based on educated guesses or
simply made for convenience. The second point is that
in nature the influence of PSP’s in one interspike
interval, and particularly when there are several of
them, extends into the following ones (e.g., Kohn,
1980; Kohn et al,, 1981; Schulman, 1969).

The upper bound for E is 4 (see above). When a
sequence of s closely equispaced EPSPs is delivered,
their effects depend on how the successive arrivals on
the one hand change the earliest instant where the
arrival of an additional EPSP will trigger immediately
a spike, and on the other advance (delay negatively) the
projected firing. After a non-triggering sequence of
EPSPs, the instants (measured from the last spike) of
earliest triggering, and projected firing, will be referred
to as A,, and N, respectively; 1 and N corresponded to
s=0. Postulate iv demands first that a set of s EPSPs
(s=1) that does not trigger shortens the interval
preserving the V-shaped delay function and advances
the point of immediate triggering, ie., N,<N and
A;<A; and additional (s+1)th EPSP shortens and
advances more, i.e., N,,, <N, and 4, , <A,. Secondly,
it demands that, for given phase and s, the shortening
and the advance be greater for more tightly packed
EPSPs: ie., 4,<A] if the corresponding E intervals are
similarly related. Thirdly, we accept that as E decreases
and s increases, A, N, and N,— 4, (always smaller than

N —J) tend in a monotonically decreasing manner to
limits M, N,,, and N, — M, respectively.

In general, in the course of a sequence of EPSPs
evenly spaced at E, that started at a phase ¢, the “next”
postsynaptic spike will be one triggered immediately if
and when an EPSP arrives that complies jointly with
two conditions : firstly, that each of the s earlier EPSPs
(1,2,...,s) arrives at intervals from the last spike [¢,
®+E,...,p+(s—1)E, respectively], smaller than the
extant A(4, 4,, ..., 4, _, respectively) determined by the
EPSP set that preceded it (none, 1, 1 and 2,...,1 to
s—1, respectively); second, that the interval
@ +(s— 1)E from the last spike to it be no smaller than
the A determined by the s earlier EPSPs (1, ...,s) and
no greater than the extant time to the projected firing
(N,N,,...,N,). Figure 5-E illustrates this for s=2. The
“next” spike will not be one triggered immediately by
EPSP s+1 under either one of two circumstances.
Firstly, when EPSP s+1 also precedes the extant

Ag ie., E<A,—{¢p+(s—1)E} implying E < '{’;‘l’.

Secondly, when E is long enough so that the “A, to N,”

interval is clear of EPSPs and EPSP s+1 follows the

next spike, ie, Ns—{¢+(s—1)E}<E implying

N,—¢
s

<E. For the interval to be clear, it is necessary

that E> Ns— A, (as illustrated for s=2 in Fig. 5F).

Postulate iv demands also that, given a sequence of
s EPSPs where the last one triggers immediately, there
always will be a value of E such that, if shortened by
little to E— AE, s EPSPs will not longer trigger, even
though A, is reduced. Finally, postulate v sets lower
bounds for interspike intervals that reflect the re-
spective refractoriness: postsynaptically, intervals can-
not be less than a value U between 0 and A ; presynapti-
cally, E cannot be less than some value which we take
smaller than U, so as to be more general.

There are two separate cases. One referred to as
Case 11-A involves E<N,— 1, where N, and A, are
conditional on ¢ and s (only regular arrivals are
considered). For the larger s, this case will exist always
Jor the shortest presynaptic intervals, providing their
lower bound U £ N,,— M. Under those circumstances,
an EPSP sequence II-A will inevitably trigger immedi-
ately regardless of its phase at some EPSP, say the sth.
The (s+ 1)th will arrive with phase E, and eventually
the (s+)th will trigger immediately; the (s+s'+ 1)th
will arrive with phase E, the (s+2s)th will trigger
immediately, and so on. There is, therefore, an s :1
locking, with an average postsynaptic interval s'E.

If, starting at an s': lalocking, the presynaptic
discharge were intensified slightly passing to E— AE,
the s'th EPSP would still trigger and the s’ : 1 locking
would be maintained: this implies a segment with




slope 1/s’ (Fig. 7). When, however, the shortening AE
were that (see postulate iv) where the locking shifts to
s'+1:1, the average interval will jump from s'E to
(s'+1)(E— AE)=(s'"+ 1)E—(s'+ 1)AE, which at any gi-
ven s’ implies a weakening of the postsynaptic dis-
charge for sufficiently small AE. Paradoxical slowings
thus occur on passing from one locking to the next,
and are in the form of discontinuities. Case II-a can, in
fact, be the only case (Fig. 7, upper graph) if the upper
bound for E in situation II, i.e,, 4, is smaller than N__A,

for all 5, i.s., ASN,,—M <N -4, implying A< %

Necessary for this s’ : 1 locking (see above) is that
the first s'— 1 not trigger but that the sth trigger: ie.,
(§—1)E<A,_, and A,_, <5E. Interval bounds are,

A ,
presynaptically: ss’— L<E< j,’ —i

; postsynaptically

sl

As:_ 1 and m‘isl_
E shortens and s increases: i the presynaptic range of
the 5" : 1 locking becomes small for intervals and large
for rates; and ii the postsynaptic intensity s'E tends to
a plateau where the interval is M and the rate M™%, a
bound whose meaning differs from that set by re-
fractoriness and relating to U. Figure 7 illustrates the
relationship between the mean rates in a synapse
where only II-A exists (upper graph) and in one with
both A and B (lower graph): among other features, it
shows that one same postsynaptic rate (e.g., 12s~! at
arrow) may correspond to several presynaptic ones.

Case II-B involves E> N, — A,. This is possible only

,- Because A, has a minimum M, as

(see above) for the larger 4, ie. A> % For those large

A, it can occur only for an s such that N, — 4, is less
than the larger E’s. We have not been able to analyze
this case exhaustively, and will restrict conclusions to
the following. Immediate triggering by the first spike
depends on the initial phase, some (smaller, equal to, or
larger than A) determining it: hence, the initial phase
may influence the subsequent steady-state. Certain
combinations of initial phase and of E lead to s':1
locking: for example, ¢, >4 and E such that a certain
EPSP falls in the immediate triggering region. It is not
clear which are the boundaries, nor whether other
combinations lead to locking, or do not. Hence, as of
now, we accept for II-B interposed segments where
behavior is unclear: they should be analyzed in com-
puter or electronically simulated models (Kohn, 1980;
Kohn and Segundo, in preparation).

Discussions

The model is relatively simple, as was its coun-
terpart for IPSPs (Kohn, 1980; Kohn et al.,, 1981;
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Segundo, 1979). Its postulates are few and straightfor-
ward, referring to pre- and postsynaptic regularities to
a V-shaped delay function whose vertex is the earliest
point where an EPSP will trigger immediately, to how
several EPSP’s affect the latter, and to limits in the
firing intensities. Its mathematics are not particularly
complex, at times bordering on high-school algebra
and everyday logic. Its behavior is characterized by
two outstanding features: namely, a zigzag rate re-
lationship with an overall increasing trend (Fig. 7), and
the pervasive fact of locking between the pre- and
postsynaptic discharges.

In the first place, as the steady-state presynaptic
discharge passes from weak to strong, the postsynaptic
excited intensity passes from natural to maximum
values: the route from one extreme to the other is
increasing, as expected. It is increasing only in a
general and special way, however. Indeed, a just as
apparent feature is that the trajectory from one ex-
treme to the other is formed very predominantly, and
perhaps exclusively, by segments whose slopes are
positive fractions s/r that decrease with increasing
presynaptic intensities, and are broader when the sum
of s and r is small (e.g., 1:1, 1:2, 2:1) than when it is
large. The passage from one 1:r or s:1 positively-
sloped segment to others is negatively sloped (para-
doxical) involving for the more intense presynaptic
discharges (i.e., s> 1) discontinuities, and for weak ones
other staggered positively sloped segments whose fea-
tures (e.g, number, breadths) are unclear. The same
postsynaptic intensity may correspond to several pre-
synaptic ones. The highest postsynaptic intensity
achieved may reflect how early in the interval the spike
can be triggered immediately, as well as pre- or
postsynaptic refractorinesses.

The second outstanding feature is the “locking” of
the discharges, ie., the invariant forward and back-
ward temporal relation between pre- and postsynaptic
spikes. When the presynaptic firing intensity is weak
and there is at least one spike per EPSP, locking is
present regardless of the initial phase ¢,, or of the
presynaptic interval E. It occurs in the simple 1:r+1
ratio (r20) if E is in the {rN + A, (r+ 1)N} range, being
either stable with E and ¢, at a phase E—rN, or
unstable at a phase ¢%. It occurs in other ratios
(2:3,3:4,...) if E is in the {rN,rN+ A} range (r>0).
EPSP’s arriving at integral multiples of N do not
change the postsynaptic intensity. When the presynap-
tic intensity is strong and there is more than one EPSP
per spike, locking occurs in the simple s : 1 ratio (s' 22)
and is stable if E is in ranges that depend on the earlist
instants for inmediate triggering (15). This may be the
only possibility when the earliest instant for immediate
triggering is very close to the preceding spike. When
the earliest instant is far from the preceding spike,




124

there are ranges of larger E’s where locking occurs in
other ratios (e.g., 3:2), or may not occur at all,
behavior being unclear.

The rest of this section will be framed around three
main questions.

First Question. How does one test the validity of a
model? A model must be judged against standards
provided by the reality of the living entity it is designed
to represent. There are two complementary criteria.
The first is an a priori judgement as to whether the
postulates depart reasonably little from nature. This
implies deciding, on the one hand, that the relations
stipulated between the parameters are realistic, and on
the other that important influential issues have not
been ignored. Some departure is inevitable, and un-
known issues can never be discarded. The second
criterion arises a posteriori from an experimental
examination of whether the natural behavior, in spite
of departures and/or other issues, is still compatible
with the model’s behavior. What this examination tells
us is in essence how behavior is modified when con-
ditions depart from those stipulated rigorously in a
model, and the domain over which the model is
applicable in an admissible way. The expressions “re-
asonably little”, “is still compatible with” and “in an
admissible way” are attended with some degree of
vagueness and ambiguity. These are less marked than
they appear at first sight, however, since many param-
eters can be evaluated by statistical tests in which the
nature and extent of the uncertainty can be expressed
precisely. Judging the usefulness of a model, in terms
for instance providing insights as to mechanisms (e.g.
Kawato and Suzuki, 1980), or predicting behavior
patterns, is a somewhat separate issue that will not be
discussed here.

Each physical system that is a putative embodi-
ment of the model tolerates departures from the
postulates in its own characteristics manner, whose
determination ultimately is an empirical question.
Though an extensive evaluation of the present model
will be presented by Diez-Martinez et al. (in prepara-
tion), a preliminary summary follows. Living pace-
makers violate postulate i about perfect regularity by
exhibiting interval coefficients of variation of 1-5%
(e.g, Firth, 1966; Kohn, 1980). EPSP’s in Aplysia
neurons shorten postsynaptic intervals, and the shor-
tening depends on the phase in a way close to a
V-shaped curve, as required in postulates ii and iii,
respectively (e.g., Fig. 172 in Segundo and Perkel,
1969): they violate iii, however, because of some scatter
around the best-fitted lines, and because of the practi-
cally O delays for small phases. PSP’s are not in-
stantaneous events: this is particularly true in centrally
placed neurons where a powerful compound PSP can

be elicited jointly by several synchronized weak syn-
apses. A totally synchronous discharge of several cells
would be equivalent to the unitary PSP in the model:
the gradual breaking up of a powerful PSP into several
less synchronous ones is yet another natural departure
to be analyzed, one particularly relevant to central
networks.

Insofar as behavior is concerned, the little evidence
available is compatible with the notion that some
neuronal performances are mimicked fairly well by this
model; indeed, locking occurs in Aplysia ganglia
(Fig. 159 in Segundo and Perkel, 1969) and computer-
simulated synapses exhibit zigzag rate relations
(Moore et al,, 1963; Perkel et al.,, 1964; Segundo and
Perkel, 1969). Furthermore, Hartline (1976) obtained
approximately V-shaped delay functions using brief
depolarizing current pulses in the tonic stretch re-
ceptor neuron of crayfish, noting also that larger pulses
led to smaller values. His “active pacemaker model”,
that includes processes representing an active com-
ponent that adds to a passive pacemaker potential as
well as electrogenic pumping, resembled the living
preparation better, and therefore was a better embodi-
ment and justification of postulate iii, than an “in-
tegrate and fire” model.

This and similar models (e.g., Segundo, 1979) ig-
nore the remarkable experimental finding of hysteresis,
i.e., of the fact that estimates of curves as those in Fig. 7
are translated to the right or to the left (and thus
“cycles” appear), depending on whether presynaptic
rates tested at short intervals are in increasing or
decreasing order, respectively (e.g, Kohn et al,
1981; Vibert et al, in preparation). Within the
present context hysteresis would imply a change in
parameters (e.g., A, B in Segundo, 1979, or A here).
Kawato and Susuki (1980) explain the hysteresis (as
well as other behavior) of a circadian pacemaker by
assuming it to be composed of two identical oscillators
coupled weakly and symmetrically, and subjected to
some environmental parameter: stable solutions are
only in-phase or only out-of-phase at extreme values of
this parameter, but at intermediate ones will be one or
the other depending on previous history. Even without
hysteresis, the quantitative analysis of periodic stimuli
acting upon non-linear oscillations is, as pointed out
by Glass and Mackey (1979), extremely complex.

Second Question. Is the model applicable to other
systems with periodic manifestations, i.e. to other oscil-
lators? The answer must be affirmative. Indeed, the
crucial assertions remain true though the specifics of
the language are valid only for synapses with EPSP’s.
The postulates, on the one hand, demand only certain
behaviors (e.g., periodicity, delaying effects, maximum
intensities) ; neither the nature of the entities studied,




nor the underlying mechanisms (in, say, synapse or
membrane), nor the role being played in a larger
network ever become issues. The logical skeleton of the
argument, on the other hand, subsists even if the
neurophysiological labels are substituted by different
ones. Experimental observations performed in several
preparations, though not exhaustive, are entirely com-
patible with an affirmative answer: the interacting
variables have been temperature pulses — Drosophila
ecclosion, light-circadian rhythms, lung inflation-
phrenic discharge, vagal outflow-heart beat, oxygen
concentration-yeast glucose consumption, as well as
others (Vibert et al, in preparation; Winfree, 1980).
Particularly relevant to neurophysiologists is that
where the variables are periodic sensory stimuli and
afferent spike discharges.

This question implies the more general one of the
possible paths followed by the scientific process that
lead to accepting a particular assertion. An example of
such an assertion is the first paragraph of this
Discussion, from “The behavior of this model ...” to
“...postsynaptic discharges”. This assertion can be
accepted on the basis of any one of the following
actions. i, By inferring it from experimentation; in
other words, by proposing it after observing what
actually does happen when living pacemaker neurons
interact trans-synaptically, and noting that results are
those to be expected were the assertion justified and
unlikely were it false. This path, which in fact is
essentially the only way that new knowledge can be
generated, constitutes the ultimate test. ii. By deducing
the assertion from general rules that have been accept-
ed at a different level of approach. For example, by
taking as premises current notions about basic synap-
tic mechanisms (transmitter, membrane, thermody-
namic), and then passing to the conclusions that are
judged necessary in terms of the trans-synaptic relation
between spike trains. Or, alternatively, by taking as
premises current notions about the operation of a
network that includes a synapse with EPSP’s, and then
passing to the conclusions that are judged necessary in
terms of the trans-synaptic relation in that particular
component. iii. By deducing the assertion from the
behavior of some model. For example, if 2 model of the
synapse (the present one; Hartline, 1976 ; Kohn, 1980,
Kohn and Segundo, 1981; Moore et al., 1963 ; Perkel
et al., 1964; Segundo, 1979) performs in a certain
manner then we deduce that living ones will too.

A “model” of a system is another system (mechani-
cal, electrical, computer-simulated, mathematical, etc.)
that resembles, copies or mimics the first more or less
closely. The usefulness of models arises ultimately from
the fact that what at first sight simply are fundamental
geometrical concepts in space have a broad and ever-
increasing domain of application, that can reach nu-
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merous fields of logical thought. Because of this,
questions posed in fields that superficially appear as
quite different have a common core, and therefore are
subject to similar answers. This notion has been
analyzed and discussed extensively precisely a propos
of oscillators (Winfree, 1980). Though the analysis of
such fundamental issues often loses much immediate
intuitiveness and may become obscure to non-
specialists, neurophysiologists cannot avoid recogniz-
ing that they are always implicit in their work.

Third Question. How broad is the domain within which
the rules of oscillator behavior can be applied legit-
imately? The answer is contingent on the definition of
oscillator. An “oscillator” is an entity (mathematical,
physical) whose output shows a periodic variation. At
an intuitive level, most would agree that a system such
as a perfect clock, where given a manifestation right
now one knows exactly from the beginning to the end
of time the precise times of past and future manifes-
tations, is an oscillator. Most would agree too that a
system, such as a “generator” of white noise or of a
Poisson process, where given a manifestation right
now one knows absolutely nothing about when past
and future manifestations occur, is not an oscillator.
Likewise, there would be little disagreement as to the
oscillator or non-oscillator character of systems that
deviate little from the above; i.e., a system where other
manifestations are extremely likely around integral
multiples of a certain period and extremely unlikely
elsewhere is an oscillator, and one where other mani-
festations are more likely in broad areas around in-
tegral multiples of a certain period and barely less
likely elsewhere is not. Separating oscillators from non-
oscillators in less extreme cases requires the choice
of a “threshold” along a continuum (where spectra
provide an appropriate quantification): hence, any
system can be accepted, or rejected, as an oscillator
providing that the threshold criterion is sufficiently lax,
or stringent, respectively. Excepted from the above are
only the perfect clock and the white noise or Poisson
generator that always will be accepted, or rejected,
respectively. Since neither is physically realizable, it is
necessary for any real system to ask in which measure
it abides by the rules that control oscillator behaviors.
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